Microwave Noise in Semiconductor Devices

Microwave Noise in Semiconductor Devices
Author: Hans Hartnagel
Publisher: John Wiley & Sons
Total Pages: 316
Release: 2001-01-16
Genre: Technology & Engineering
ISBN: 9780471384328

A thorough reference work bridging the gap between contemporary and traditional approaches to noise problems Noise in semiconductor devices refers to any unwanted signal or disturbance in the device that degrades performance. In semiconductor devices, noise is attributed to hot-electron effects. Current advances in information technology have led to the development of ultrafast devices that are required to provide low-noise, high-speed performance. Microwave Noise in Semiconductor Devices considers available data on the speed versus noise trade-off and discusses optimal solutions in semiconductors and semiconductor structures. These solutions are of direct interest in the research and development for fast, efficient, and reliable communications systems. As the only book of its kind accessible to practicing engineers, the material is divided into four parts-the kinetic theory of fluctuations and its corollaries, the methods of measurements of microwave noise, low-dimensional structures, and, finally, devices. With over 100 illustrations presenting recent experimental data for up-to-date semiconductor structures designed for ultrafast electronics, together with results of microscopic simulation where available, these examples, tables, and references offer a full comprehension of electronic processes and fluctuation in dimensionally quantizing structures. Bridging the apparent gap between the microscopic approach and the equivalent circuit approach, Microwave Noise in Semiconductor Devices considers microwave fluctuation phenomena and noise in terms of ultrafast kinetic processes specific to modern quantum-well structures. Scientists in materials science, semiconductor and solid-state physics, electronic engineers, and graduate students will all appreciate this indispensable review of contemporary and future microwave and high-speed electronics.

WDM and Photonic Networks

WDM and Photonic Networks
Author: D. W. Faulkner
Publisher: IOS Press
Total Pages: 244
Release: 2000
Genre: Computers
ISBN: 9781586030667

Volume 1 WDM and Photonic Networks will focus on recent developments in long-haul WDM and photonic networks and will include invited papers from key vendors and technologists. A paper on DWDM by Lucent will show how Raman amplification enables the quadrupling of the line rate from OC-192 to OC-768 in a recent 1.6Tb/s experiment.

Survey of Semiconductor Physics, Electronic Transport in Semiconductors

Survey of Semiconductor Physics, Electronic Transport in Semiconductors
Author: Karl W. Böer
Publisher: Wiley-VCH
Total Pages: 1224
Release: 2002-04-05
Genre: Science
ISBN:

A comprehensive treatment of the fundamentals of semiconductor physics and materials science. The first edition of the Survey of Semiconductor Physics set the standard for the multifaceted exploration of semiconductor physics. Now, Dr. Karl B?er, one of the world's leading experts in solid-state physics, with assistance from a team of the fields top researchers, expands this coverage in the Second Edition. Completely updated and substantially expanded, the Survey of Semiconductor Physics, Second Edition covers the basic elements in the entire field of semiconductor physics, emphasizing the materials and surface science involved. The Second Edition uses similar theoretical approaches and analyses for the basic material classes: crystalline, amorphous, quantum structures, and organics. The first volume provides thorough coverage of the structure of semiconductors, including: Phonons Energy bands Photons as they interact with the semiconductor and other particles Defects Generation and recombination Kinetics Part I of the Volume 2 begins with a thorough treatment of the carrier transport in homogeneous semiconductors, creating the context for the studies of inhomogeneous semiconductors that consume the majority of the text. The editors' primary concerns are the effects and implications of surfaces, interfaces, inhomogeneous doping, and space charges upon the electronic transport. Part II provides a general overview of the types of abrupt material inhomogeneities that are produced by interfaces and surfaces. Part III presents a detailed mathematical analysis of the interrelation between space charges, fields, and carrier transport, applying these calculations to a wide array of specific examples. Returning to his stated emphasis on practical application, B?er then focuses on the material preparations that are essential to produce semiconductor devices in Part IV and examines two specific examples of semiconductors-solar cells and light-emitting diodes-in Part V. In both volumes, extensive appendices simplify searches for important formulae and tables. An elaborate word index and reference listings allow readers to use the reference in multiple ways to discover expanding literature; to explore similarities and connecting principles in other fields; to find out how others in adjacent fields came up with intriguing solutions to similar problems; and to obtain a broad overview of the entire field of semiconductor physics.

OFC 2002

OFC 2002
Author:
Publisher:
Total Pages: 960
Release: 2002
Genre: Broadband amplifiers
ISBN:

Vacuum Nanoelectronic Devices

Vacuum Nanoelectronic Devices
Author: Anatoliy Evtukh
Publisher: John Wiley & Sons
Total Pages: 472
Release: 2016-03-16
Genre: Technology & Engineering
ISBN: 1119037964

Introducing up-to-date coverage of research in electron field emission from nanostructures, Vacuum Nanoelectronic Devices outlines the physics of quantum nanostructures, basic principles of electron field emission, and vacuum nanoelectronic devices operation, and offers as insight state-of-the-art and future researches and developments. This book also evaluates the results of research and development of novel quantum electron sources that will determine the future development of vacuum nanoelectronics. Further to this, the influence of quantum mechanical effects on high frequency vacuum nanoelectronic devices is also assessed. Key features: • In-depth description and analysis of the fundamentals of Quantum Electron effects in novel electron sources. • Comprehensive and up-to-date summary of the physics and technologies for THz sources for students of physical and engineering specialties and electronics engineers. • Unique coverage of quantum physical results for electron-field emission and novel electron sources with quantum effects, relevant for many applications such as electron microscopy, electron lithography, imaging and communication systems and signal processing. • New approaches for realization of electron sources with required and optimal parameters in electronic devices such as vacuum micro and nanoelectronics. This is an essential reference for researchers working in terahertz technology wanting to expand their knowledge of electron beam generation in vacuum and electron source quantum concepts. It is also valuable to advanced students in electronics engineering and physics who want to deepen their understanding of this topic. Ultimately, the progress of the quantum nanostructure theory and technology will promote the progress and development of electron sources as main part of vacuum macro-, micro- and nanoelectronics.