Wind Tunnel Simulation Of Atmospheric Boundary Layer
Download Wind Tunnel Simulation Of Atmospheric Boundary Layer full books in PDF, epub, and Kindle. Read online free Wind Tunnel Simulation Of Atmospheric Boundary Layer ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Bill Addis |
Publisher | : John Wiley & Sons |
Total Pages | : 70 |
Release | : 2020-11-02 |
Genre | : Technology & Engineering |
ISBN | : 3433032572 |
Physical models have been, and continue to be used by engineers when faced with unprecedented challenges, when engineering science has been non-existent or inadequate, and in any other situation when the engineer has needed to raise their confidence in a design proposal to a sufficient level to begin construction. For this reason, models have mostly been used by designers and constructors of highly innovative projects, when previous experience has not been available. The book covers the history of using of physical models in the design and development of civil and building engineering projects including bridges in the mid-18th century, William Fairbairn?s Britannia bridge in the 1840s, the masonry Aswan Dam in the 1890s, concrete dams in the 1920s, thin concrete shell roofs and the dynamic behaviour of tall buildings in earthquakes from the 1930s, tidal flow in estuaries and the acoustics of concert halls from the 1950s, and cable-net and membrane structures in the 1960s. Traditionally, progress in engineering has been attributed to the creation and use of engineering science, the understanding materials properties and the development of new construction methods. The book argues that the use of reduced scale models have played an equally important part in the development of civil and building engineering. However, like the history of engineering design itself, this crucial contribution has not been widely reported or celebrated. The book concludes with reviews of the current use of physical models alongside computer models, for example, in boundary layer wind tunnels, room acoustics, seismic engineering, hydrology, and air flow in buildings.
Author | : John D. Holmes |
Publisher | : CRC Press |
Total Pages | : 380 |
Release | : 2001-06-14 |
Genre | : Technology & Engineering |
ISBN | : 9780419246107 |
Bridging the gap between wind and structural engineering, Wind Loading of Structures is essential reading for practising civil, structural and mechanical engineers, and graduate students of wind engineering, presenting the principles of wind engineering and providing guidance on the successful design of structures for wind loading by gales, hurricanes, typhoons, thunderstorm downdrafts and tornados.
Author | : J. R. Garratt |
Publisher | : Cambridge University Press |
Total Pages | : 340 |
Release | : 1994-04-21 |
Genre | : Mathematics |
ISBN | : 9780521467452 |
The book gives a comprehensive and lucid account of the science of the atmospheric boundary layer (ABL). There is an emphasis on the application of the ABL to numerical modelling of the climate. The book comprises nine chapters, several appendices (data tables, information sources, physical constants) and an extensive reference list. Chapter 1 serves as an introduction, with chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and sea. The structure of the clear-sky, thermally stratified ABL is treated in chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant, since the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate simulation.
Author | : John C. Wyngaard |
Publisher | : Cambridge University Press |
Total Pages | : 407 |
Release | : 2010-01-28 |
Genre | : Science |
ISBN | : 1139485520 |
Based on his over forty years of research and teaching, John C. Wyngaard's textbook is an excellent up-to-date introduction to turbulence in the atmosphere and in engineering flows for advanced students, and a reference work for researchers in the atmospheric sciences. Part I introduces the concepts and equations of turbulence. It includes a rigorous introduction to the principal types of numerical modeling of turbulent flows. Part II describes turbulence in the atmospheric boundary layer. Part III covers the foundations of the statistical representation of turbulence and includes illustrative examples of stochastic problems that can be solved analytically. The book treats atmospheric and engineering turbulence in a unified way, gives clear explanation of the fundamental concepts of modeling turbulence, and has an up-to-date treatment of turbulence in the atmospheric boundary layer. Student exercises are included at the ends of chapters, and worked solutions are available online for use by course instructors.
Author | : Yukio Tamura |
Publisher | : Springer |
Total Pages | : 200 |
Release | : 2016-03-25 |
Genre | : Science |
ISBN | : 4431559124 |
This book is highly suitable for advanced courses as it introduces state-of-the-art information and the latest research results on diverse problems in the environmental wind engineering field. The topics include indoor natural ventilation, pedestrian wind environment, pollutant dispersion, urban heat island phenomena, urban ventilation, indoor/outdoor thermal comfort, and experimental/numerical techniques to analyze those issues. Winds have a great influence on the outdoor environment, especially in urban areas. Problems that they cause can be attributed to either strong wind or weak wind issues. Strong winds around high-rise buildings can bring about unpleasant, and in some cases dangerous, situations for people in the outdoor environment. On the other hand, weak wind conditions can also cause problems such as air pollution and heat island phenomena in urban areas. Winds enhance urban ventilation and reduce those problems. They also enhance natural ventilation in buildings, which can reduce the energy consumption of mechanical ventilation fans and air conditioners for cooling. Moderate winds improve human thermal comfort in both indoor and outdoor environments in summer. Environmental wind engineering associated with wind tunnel experiments and numerical analysis can contribute to solutions to these issues.
Author | : Jewel B. Barlow |
Publisher | : John Wiley & Sons |
Total Pages | : 738 |
Release | : 1999-02-22 |
Genre | : Technology & Engineering |
ISBN | : 0471557749 |
A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.
Author | : Ted Stathopoulos |
Publisher | : Springer Science & Business Media |
Total Pages | : 234 |
Release | : 2007-12-31 |
Genre | : Science |
ISBN | : 3211730761 |
Written by seven internationally known experts, the articles in this book present the fundamentals and practical applications of contemporary wind engineering. It covers complex problems in wind-building interaction from the perspective of a structural designer, examining both experimental and computational approaches and their relative merits.
Author | : T. R. Oke |
Publisher | : Cambridge University Press |
Total Pages | : 549 |
Release | : 2017-09-14 |
Genre | : Science |
ISBN | : 1108179363 |
Urban Climates is the first full synthesis of modern scientific and applied research on urban climates. The book begins with an outline of what constitutes an urban ecosystem. It develops a comprehensive terminology for the subject using scale and surface classification as key constructs. It explains the physical principles governing the creation of distinct urban climates, such as airflow around buildings, the heat island, precipitation modification and air pollution, and it then illustrates how this knowledge can be applied to moderate the undesirable consequences of urban development and help create more sustainable and resilient cities. With urban climate science now a fully-fledged field, this timely book fulfills the need to bring together the disparate parts of climate research on cities into a coherent framework. It is an ideal resource for students and researchers in fields such as climatology, urban hydrology, air quality, environmental engineering and urban design.
Author | : Jack E. Cermak |
Publisher | : Springer Science & Business Media |
Total Pages | : 810 |
Release | : 1994-11-30 |
Genre | : Science |
ISBN | : 9780792332022 |
If one surveys the development of wind engineering, one comes to the conclusion that the challenge of urban climatology is one of the most important remaining tasks for the wind engineers. But what distinguishes wind engineering in urban areas from conventional wind engineering? Principally, the fact that the effects studied are usually unique to a particular situation, requiring consideration of the surroundings of the buildings. In the past, modelling criteria have been developed that make it possible to solve environmental problems with great confidence, and studies validated the models: at least in a neutrally stratified atmosphere. The approach adopted in the book is that of applied fluid mechanics, since this forms the basis for the evaluation of the urban wind field. Variables for air quality or loads are problem specific, or even random, and methods for studying them are based on risk analysis, which is also presented. Criteria are developed for a systematic approach to urban wind engineering problems, including parameter studies. The five sections of the book are: Fundamentals of urban boundary layer and dispersion; Forces on complex structures in built-up areas; Air pollution in cities; Numerical solution techniques; and Posters. A subject index is included.
Author | : William H. Snyder |
Publisher | : |
Total Pages | : 204 |
Release | : 1981 |
Genre | : Air |
ISBN | : |