What Determines an Algebraic Variety?

What Determines an Algebraic Variety?
Author: János Kollár
Publisher: Princeton University Press
Total Pages: 240
Release: 2023-07-25
Genre: Mathematics
ISBN: 0691246815

"In this monograph, the authors approach a rarely considered question in the field of algebraic geometry: to what extent is an algebraic variety X determined by the underlying Zariski topological space ]X]? Before this work, it was believed that the Zariski topology could give only coarse information about X. Using three reconstruction theorems, the authors prove -- astoundingly -- that the variety X is entirely determined by the Zariski topology when the dimension is at least two. It offers both new techniques, as this question had not been previously studied in depth, and future paths for application and inquiry"--

Algebraic Varieties

Algebraic Varieties
Author: G. Kempf
Publisher: Cambridge University Press
Total Pages: 180
Release: 1993-09-09
Genre: Mathematics
ISBN: 9780521426138

An introduction to the theory of algebraic functions on varieties from a sheaf theoretic standpoint.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
Total Pages: 498
Release: 2018-06-01
Genre: Mathematics
ISBN: 1470435187

This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.

Algebraic Geometry

Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
Total Pages: 511
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475738498

An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.

Rational Curves on Algebraic Varieties

Rational Curves on Algebraic Varieties
Author: Janos Kollar
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2013-04-09
Genre: Mathematics
ISBN: 3662032767

The aim of this book is to provide an introduction to the structure theory of higher dimensional algebraic varieties by studying the geometry of curves, especially rational curves, on varieties. The main applications are in the study of Fano varieties and of related varieties with lots of rational curves on them. This Ergebnisse volume provides the first systematic introduction to this field of study. The book contains a large number of examples and exercises which serve to illustrate the range of the methods and also lead to many open questions of current research.

Algebraic Geometry I

Algebraic Geometry I
Author: David Mumford
Publisher: Springer
Total Pages: 208
Release: 1976
Genre: Mathematics
ISBN:

From the reviews: "Although several textbooks on modern algebraic geometry have been published in the meantime, Mumford's "Volume I" is, together with its predecessor the red book of varieties and schemes, now as before one of the most excellent and profound primers of modern algebraic geometry. Both books are just true classics!" Zentralblatt

Rational Points on Varieties

Rational Points on Varieties
Author: Bjorn Poonen
Publisher: American Mathematical Soc.
Total Pages: 358
Release: 2017-12-13
Genre: Mathematics
ISBN: 1470437732

This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.

Hassler Whitney Collected Papers Volume I

Hassler Whitney Collected Papers Volume I
Author: James Eelles
Publisher: Springer Science & Business Media
Total Pages: 603
Release: 2013-06-29
Genre: Science
ISBN: 1461229723

We present here the mathematical papers of Hassler Whitney. This collection contains all the published papers, with the exception of some short announcements that Whitney did not wish to be included. We also include the introduction to his book Geometric Integration Theory, and one previously unpublished manuscript on the four-color problem. The papers are presented under some broad categories: graphs· and combinatorics, differentiable functions and singularities, analytic spaces, manifolds, bundles and characteristic classes, topology and algebraic topology, geometric integration theory. Whitney intended to write an introduction to this collection. Unfortunately he left us no manuscript at the time of his death, May 10, 1989. We had discussed the possibility of using his paper "Moscow 1935 - Topology moving toward America," written for the Centennial of the American Mathematical Society, as part of his introduction to this collection, an idea which he much liked. We therefore include this paper, which contains personal information as well as mathematical reflections, as Whitney's own introduction to these volumes. Whitney's mathematical style, like his personal style, was that of an explorer and pioneer. One of the pictures included in these volumes shows him as a mountain climber. In mathematics, he preferred to work on undeveloped areas: break new ground and build foundations. During the last twenty years of his life he concentrated his efforts on developing an educational system that builds on the natural tendency in children to be explorers.

Introduction to Algebraic Geometry

Introduction to Algebraic Geometry
Author: Serge Lang
Publisher: Courier Dover Publications
Total Pages: 273
Release: 2019-03-20
Genre: Mathematics
ISBN: 048683980X

Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.