Wetting Theory
Download Wetting Theory full books in PDF, epub, and Kindle. Read online free Wetting Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Eli Ruckenstein |
Publisher | : CRC Press |
Total Pages | : 865 |
Release | : 2018-11-19 |
Genre | : Science |
ISBN | : 0429687060 |
Wetting Theory discusses the numerous practical applications of wetting, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, thisvolume provides new, critical insights into the theory of wetting. Chapters are arranged to allow readers to follow the development of a suggested approach (static and dynamic properties of wetting) and how these tools are applied to specific problems. Main attention is given to nanoscale wetting (nanodrops on solid surfaces, liquid in the nanoslit) on the basis of microscopic density functional theory and fluid dynamics on solid surfaces on the basis of hydrodynamic equations. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing invaluable insights to the field.
Author | : Eli Ruckenstein |
Publisher | : CRC Press |
Total Pages | : 1226 |
Release | : 2019-12-17 |
Genre | : Science |
ISBN | : 0429947542 |
Wetting: Theory and Experiments collates papers published by Professor Eli Ruckenstein and his coworkers on the theoretical and experimental investigation of wetting of solid surfaces. It contains six chapters, each of which is preceded by a short introduction. The papers are selected according to the specific features being considered and they are arranged in logical rather than chronological order. The book focuses on wetting on the nanoscale (nanodrops on solid surfaces, liquid in the nanoslit) considered on the basis of microscopic density functional theory and to dynamics of fluid on the solid surface considered on the basis of hydrodynamic equations. Along with this, experimental studies of wetting related to various applications are presented.
Author | : Eli Ruckenstein |
Publisher | : CRC Press |
Total Pages | : 1012 |
Release | : 2018-12-04 |
Genre | : Science |
ISBN | : 0429687052 |
Wetting Theory discusses the numerous practical applications of wetting, such as preparing self-cleaning surfaces, manufacturing artificial blood vessels, and developing new lubricants and nonadhesive dishes. As part of Wetting: Theory and Experiments, Two-Volume Set, this volume provides new, critical insights into the theory of wetting. Chapters are arranged to allow readers to follow the development of a suggested approach (static and dynamics properties of wetting) and how these tools are applied to specific problems. Main attention is given to nanoscale wetting (nanodrops on solid surfaces, liquid in the nanoslit) on the basis of microscopic density functional theory and fluid dynamics on solid surfaces on the basis of hydrodynamic equations. Aimed at engineers, physical scientists, and materials scientists, this volume addresses the key areas of wetting, providing invaluable insights to the field.
Author | : David Brutin |
Publisher | : Academic Press |
Total Pages | : 464 |
Release | : 2015-05-11 |
Genre | : Science |
ISBN | : 0128008083 |
Droplet Wetting and Evaporation provides engineers, students, and researchers with the first comprehensive guide to the theory and applications of droplet wetting and evaporation. Beginning with a relevant theoretical background, the book moves on to consider specific aspects, including heat transfer, flow instabilities, and the drying of complex fluid droplets. Each chapter covers the principles of the subject, addressing corresponding practical issues and problems. The text is ideal for a broad range of domains, from aerospace and materials, to biomedical applications, comprehensively relaying the challenges and approaches from the different communities leading the way in droplet research and development. - Provides a broad, cross-subject coverage of theory and application that is ideal for engineers, students and researchers who need to follow all major developments in this interdisciplinary field - Includes comprehensive discussions of heat transfer, flow instabilities, and the drying of complex fluid droplets - Begins with an accessible summary of fundamental theory before moving on to specific areas such as heat transfer, flow instabilities, and the drying of complex fluid droplets
Author | : Robin Ras |
Publisher | : Royal Society of Chemistry |
Total Pages | : 406 |
Release | : 2016-11-25 |
Genre | : Science |
ISBN | : 1782621547 |
Author | : Yan Li |
Publisher | : BoD – Books on Demand |
Total Pages | : 120 |
Release | : 2023-11-29 |
Genre | : Technology & Engineering |
ISBN | : 1837690146 |
This book includes six chapters on wind turbine icing. For wind turbines operating in cold regions, icing often occurs on blade surfaces in winter. This ice accretion can change the aerodynamic shape of the blade airfoil, causing performance degradation and loss of power generation, even leading to operational accidents. This book focuses on the recent research progress on wind turbine icing. Chapters address such topics as the effect of icing conditions on the icing distribution characteristics of a blade airfoil for vertical-axis wind turbines, power loss estimation in wind turbines due to icing, wind turbine icing prediction methods, especially those using machine learning, the icing process of a single water droplet on a cold aluminum plate surface, the main theories of the icing adhesive mechanism, and theoretical and experimental studies on the ultrasonic de-icing method for wind turbine blades. This book is a valuable reference for researchers and engineers engaged in wind turbine icing and anti-icing research.
Author | : Kash L. Mittal |
Publisher | : CRC Press |
Total Pages | : 543 |
Release | : 2006-05-29 |
Genre | : Science |
ISBN | : 9067644366 |
This volume chronicles the proceedings of the 4th International Symposium on Contact Angle, Wettability and Adhesion held in Philadelphia, PA, June 2004. The world of wettability is very wide and it plays a crucial role in many and varied technological areas ranging from microfluidics to biomedical to agriculture to welding. This volume contains a total of 31 papers covering many ramifications of contact angle, wettability and adhesion. All manuscripts were rigorously peer-reviewed and revised, and properly edited before inclusion in this book. The topics covered include: fundamental aspects of contact line region; evaporative behavior of sessile drops; various factors influencing contact angle measurements; different kinds of contact angles; various ways to measure contact angles; contact angle hysteresis; contact angle measurements on various materials (smooth, rough, porous, heterogeneous); effect of electric field on contact angle (electrowetting); wetting and spreading on heterogeneous surfaces; factors influencing wetting/spreading phenomena; determination of solid surface free energy via contact angle measurements; application of AFM in determining solid surface tension at the nano-scale; ultralyophobic surfaces; surface modification and wettability; multiphase flow dynamics in porous media; thin film coatings for textile materials; bio-fouling resistant coatings; relationships between wetting and adhesion; and relevance/importance of wetting and surface energetics in technological applications, including cleaning of flooring materials, kinetics of oil removal from coating materials, cell adhesion, and mold compound- metal adhesion in semiconductor packaging.
Author | : Vijay Kumar Thakur |
Publisher | : Elsevier |
Total Pages | : 542 |
Release | : 2017-09-19 |
Genre | : Technology & Engineering |
ISBN | : 0128104635 |
Biopolymer Grafting: Applications presents the latest research and developments in the practical application of these methods in industry, both to enable polymer scientists and engineers to keep up with the latest research trends, as well as to propose ideas for further research and application. Research into bio-based polymers has become increasingly prevalent. However, due to challenges related to the properties of these materials compared to synthetic polymers—such as their resistance to chemicals or weather—uptake has not dramatically increased yet. As a result, improvements in surface modification of bio-polymers through graft copolymerization are enormously important, because they will widen the scope of their applications. Relevant industries for application of these methods include automotive, construction, food, packaging, agriculture, textiles and paper. This book provides an overview of the developments made in the area of biopolymer-based graft polymers. Advantages, disadvantages and suggestions for future works are discussed, assisting materials scientists and researchers in mapping out the future of these new "green" materials through value addition to enhance their use. - Helps researchers and product developers understand the applications and limitations of biopolymer copolymers or copolymers of natural polymers - Offers a roadmap to future applications development in a range of different industries, including automotive, biomedical and packaging - Increases familiarity with a range of biopolymer grafting processes, enabling materials scientists and engineers to improve material properties and widen the range of potential biopolymer applications
Author | : Pengfei Zhao |
Publisher | : Springer Nature |
Total Pages | : 891 |
Release | : 2020-04-09 |
Genre | : Technology & Engineering |
ISBN | : 9811518645 |
This book includes a selection of peer-reviewed papers presented at the 10th China Academic Conference on Printing and Packaging, which was held in Xi'an, China, on November 14–17, 2019. The conference was jointly organized by the China Academy of Printing Technology, Beijing Institute of Graphic Communication, and Shaanxi University of Science and Technology. With 9 keynote talks and 118 papers on graphic communication and packaging technologies, the conference attracted more than 300 scientists. The proceedings cover the latest findings in a broad range of areas, including color science and technology, image processing technology, digital media technology, mechanical and electronic engineering, Information Engineering and Artificial Intelligence Technology, materials and detection, digital process management technology in printing and packaging, and other technologies. As such, the book appeals to university researchers, R&D engineers and graduate students in the graphic arts, packaging, color science, image science, material science, computer science, digital media, and network technology.
Author | : |
Publisher | : Academic Press |
Total Pages | : 725 |
Release | : 2019-05-29 |
Genre | : Medical |
ISBN | : 0128144289 |
Biomaterials and Bionanotechnology examines the current state of the field within pharmaceutical sciences and concisely explains the history of biomaterials including key developments. Written by experts in the field, this volume within the Advances in Pharmaceutical Product Development and Research series deepens understanding of biomaterials and bionanotechnology within drug discovery and drug development. Each chapter delves into a particular aspect of this fast-moving field to cover the fundamental principles, advanced methodologies and technologies employed by pharmaceutical scientists, researchers and pharmaceutical industries to transform a drug candidate or new chemical entity into a final administrable dosage form, with particular focus on biomaterials and bionanomaterials. This book provides a comprehensive examination suitable for researchers working in the pharmaceutical, cosmetics, biotechnology, food and related industries as well as advanced students in these fields. - Examines the most recent developments in biomaterials and nanomaterials for pharmaceutical sciences - Covers important topics, such as the fundamentals of polymers science, transportation and bio interaction of properties in nanomaterials across biological systems, and nanotechnology in tissue engineering as they pertain specifically to pharmaceutical sciences - Contains extensive references for further discovery on the role of biomaterials and nanomaterials in the drug discovery process