Wavelets, Frames and Operator Theory

Wavelets, Frames and Operator Theory
Author: Palle E. T. Jørgensen
Publisher: American Mathematical Soc.
Total Pages: 358
Release: 2004
Genre: Mathematics
ISBN: 0821833804

Nineteen papers are presented from a special joint session held in conjunction with the American Mathematical Society's 2003 annual meeting in Baltimore, and a National Science Foundation workshop at the University of Maryland. The papers distinguish themselves by often including applications as wel

Gabor and Wavelet Frames

Gabor and Wavelet Frames
Author: Say Song Goh
Publisher: World Scientific
Total Pages: 226
Release: 2007
Genre: Mathematics
ISBN: 9812709088

Gabor and wavelet analyses have found widespread applications in signal analysis, image processing and many other information-related areas. Both deliver representations that are simultaneously local in time and in frequency. Due to their significance and success in practical applications, they formed some of the core topics of the program OC Mathematics and Computation in Imaging Science and Information ProcessingOCO, which was held at the Institute for Mathematical Sciences, National University of Singapore, from July to December 2003 and in August 2004. As part of the program, tutorial lectures were conducted by international experts, and they covered a wide spectrum of topics in mathematical image, signal and information processing.This volume includes exposition articles by the tutorial speakers on the foundations of Gabor analysis, subband filters and wavelet algorithms, and operator-theoretic interpolation of wavelets and frames. It also presents research papers on Gabor analysis, written by specialists in their respective areas. The volume takes graduate students and researchers new to the field on a valuable learning journey from introductory Gabor and wavelet analyses to advanced topics of current research."

An Introduction to Frames and Riesz Bases

An Introduction to Frames and Riesz Bases
Author: Ole Christensen
Publisher: Birkhäuser
Total Pages: 719
Release: 2016-05-24
Genre: Mathematics
ISBN: 3319256130

This revised and expanded monograph presents the general theory for frames and Riesz bases in Hilbert spaces as well as its concrete realizations within Gabor analysis, wavelet analysis, and generalized shift-invariant systems. Compared with the first edition, more emphasis is put on explicit constructions with attractive properties. Based on the exiting development of frame theory over the last decade, this second edition now includes new sections on the rapidly growing fields of LCA groups, generalized shift-invariant systems, duality theory for as well Gabor frames as wavelet frames, and open problems in the field. Key features include: *Elementary introduction to frame theory in finite-dimensional spaces * Basic results presented in an accessible way for both pure and applied mathematicians * Extensive exercises make the work suitable as a textbook for use in graduate courses * Full proofs includ ed in introductory chapters; only basic knowledge of functional analysis required * Explicit constructions of frames and dual pairs of frames, with applications and connections to time-frequency analysis, wavelets, and generalized shift-invariant systems * Discussion of frames on LCA groups and the concrete realizations in terms of Gabor systems on the elementary groups; connections to sampling theory * Selected research topics presented with recommendations for more advanced topics and further readin g * Open problems to stimulate further research An Introduction to Frames and Riesz Bases will be of interest to graduate students and researchers working in pure and applied mathematics, mathematical physics, and engineering. Professionals working in digital signal processing who wish to understand the theory behind many modern signal processing tools may also find this book a useful self-study reference. Review of the first edition: "Ole Christensen’s An Introduction to Frames and Riesz Bases is a first-rate introduction to the field ... . The book provides an excellent exposition of these topics. The material is broad enough to pique the interest of many readers, the included exercises supply some interesting challenges, and the coverage provides enough background for those new to the subject to begin conducting original research." — Eric S. Weber, American Mathematical Monthly, Vol. 112, February, 2005

Frames and Operator Theory in Analysis and Signal Processing

Frames and Operator Theory in Analysis and Signal Processing
Author: David R. Larson
Publisher: American Mathematical Soc.
Total Pages: 306
Release: 2008
Genre: Mathematics
ISBN: 0821841440

This volume contains articles based on talks presented at the Special Session Frames and Operator Theory in Analysis and Signal Processing, held in San Antonio, Texas, in January of 2006.

Frames for Undergraduates

Frames for Undergraduates
Author: Deguang Han
Publisher: American Mathematical Soc.
Total Pages: 314
Release: 2007
Genre: Mathematics
ISBN: 0821842129

"The early chapters contain the topics from linear algebra that students need to know in order to read the rest of the book. The later chapters are devoted to advanced topics, which allow students with more experience to study more intricate types of frames. Toward that end, a Student Presentation section gives detailed proofs of fairly technical results with the intention that a student could work out these proofs independently and prepare a presentation to a class or research group. The authors have also presented some stories in the Anecdotes section about how this material has motivated and influenced their students."--BOOK JACKET.

Current Trends in Operator Theory and its Applications

Current Trends in Operator Theory and its Applications
Author: Joseph A. Ball
Publisher: Birkhäuser
Total Pages: 604
Release: 2012-12-06
Genre: Mathematics
ISBN: 3034878818

Many developments on the cutting edge of research in operator theory and its applications are reflected in this collection of original and review articles. Particular emphasis lies on highlighting the interplay between operator theory and applications from other areas, such as multi-dimensional systems and function theory of several complex variables, distributed parameter systems and control theory, mathematical physics, wavelets, and numerical analysis.

Representations, Wavelets, and Frames

Representations, Wavelets, and Frames
Author: Palle E. T. Jorgensen
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2008-08-29
Genre: Mathematics
ISBN: 0817646833

The work of Lawrence Baggett has had a profound impact on the field of abstract harmonic analysis and the many areas of mathematics that use its techniques. His sphere of influence ranges from purely theoretical results regarding the representations of locally compact groups to recent applications of wavelets and frames to problems in sampling theory and image compression. Contributions in this volume reflect this broad scope, and Baggett’s unusual ability to bring together techniques from disparate fields. Recent applications to problems in sampling theory and image compression are included.

Wavelets

Wavelets
Author: John J. Benedetto
Publisher: CRC Press
Total Pages: 586
Release: 2021-07-28
Genre: Mathematics
ISBN: 1000443469

Wavelets is a carefully organized and edited collection of extended survey papers addressing key topics in the mathematical foundations and applications of wavelet theory. The first part of the book is devoted to the fundamentals of wavelet analysis. The construction of wavelet bases and the fast computation of the wavelet transform in both continuous and discrete settings is covered. The theory of frames, dilation equations, and local Fourier bases are also presented. The second part of the book discusses applications in signal analysis, while the third part covers operator analysis and partial differential equations. Each chapter in these sections provides an up-to-date introduction to such topics as sampling theory, probability and statistics, compression, numerical analysis, turbulence, operator theory, and harmonic analysis. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise. It will be an especially useful reference for harmonic analysts, partial differential equation researchers, signal processing engineers, numerical analysts, fluids researchers, and applied mathematicians.

Wavelet Analysis and Applications

Wavelet Analysis and Applications
Author: Tao Qian
Publisher: Springer Science & Business Media
Total Pages: 567
Release: 2007-02-24
Genre: Mathematics
ISBN: 376437778X

This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics. Key topics: Approximation and Fourier Analysis Construction of Wavelets and Frame Theory Fractal and Multifractal Theory Wavelets in Numerical Analysis Time-Frequency Analysis Adaptive Representation of Nonlinear and Non-stationary Signals Applications, particularly in image processing Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike.

Wavelets and Multiscale Analysis

Wavelets and Multiscale Analysis
Author: Jonathan Cohen
Publisher: Springer Science & Business Media
Total Pages: 345
Release: 2011-03-01
Genre: Mathematics
ISBN: 0817680950

Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, is divided into three parts: Part I is devoted to the mathematical theory of wavelets and features several papers on wavelet sets and the construction of wavelet bases in different settings. Part II looks at the use of multiscale harmonic analysis for understanding the geometry of large data sets and extracting information from them. Part III focuses on applications of wavelet theory to the study of several real-world problems. Overall, the book is an excellent reference for graduate students, researchers, and practitioners in theoretical and applied mathematics, or in engineering.