Wave Equations in Higher Dimensions

Wave Equations in Higher Dimensions
Author: Shi-Hai Dong
Publisher: Springer Science & Business Media
Total Pages: 299
Release: 2011-07-09
Genre: Science
ISBN: 9400719175

Higher dimensional theories have attracted much attention because they make it possible to reduce much of physics in a concise, elegant fashion that unifies the two great theories of the 20th century: Quantum Theory and Relativity. This book provides an elementary description of quantum wave equations in higher dimensions at an advanced level so as to put all current mathematical and physical concepts and techniques at the reader’s disposal. A comprehensive description of quantum wave equations in higher dimensions and their broad range of applications in quantum mechanics is provided, which complements the traditional coverage found in the existing quantum mechanics textbooks and gives scientists a fresh outlook on quantum systems in all branches of physics. In Parts I and II the basic properties of the SO(n) group are reviewed and basic theories and techniques related to wave equations in higher dimensions are introduced. Parts III and IV cover important quantum systems in the framework of non-relativistic and relativistic quantum mechanics in terms of the theories presented in Part II. In particular, the Levinson theorem and the generalized hypervirial theorem in higher dimensions, the Schrödinger equation with position-dependent mass and the Kaluza-Klein theory in higher dimensions are investigated. In this context, the dependence of the energy levels on the dimension is shown. Finally, Part V contains conclusions, outlooks and an extensive bibliography.

Higher-Order Numerical Methods for Transient Wave Equations

Higher-Order Numerical Methods for Transient Wave Equations
Author: Gary Cohen
Publisher: Springer Science & Business Media
Total Pages: 372
Release: 2001-11-06
Genre: Science
ISBN: 9783540415985

"To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003

Finite Difference Computing with PDEs

Finite Difference Computing with PDEs
Author: Hans Petter Langtangen
Publisher: Springer
Total Pages: 522
Release: 2017-06-21
Genre: Computers
ISBN: 3319554565

This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Nonlinear Wave Equations

Nonlinear Wave Equations
Author: Walter A. Strauss
Publisher: American Mathematical Soc.
Total Pages: 106
Release: 1990-01-12
Genre: Mathematics
ISBN: 0821807250

The theory of nonlinear wave equations in the absence of shocks began in the 1960s. Despite a great deal of recent activity in this area, some major issues remain unsolved, such as sharp conditions for the global existence of solutions with arbitrary initial data, and the global phase portrait in the presence of periodic solutions and traveling waves. This book, based on lectures presented by the author at George Mason University in January 1989, seeks to present the sharpest results to date in this area. The author surveys the fundamental qualitative properties of the solutions of nonlinear wave equations in the absence of boundaries and shocks. These properties include the existence and regularity of global solutions, strong and weak singularities, asymptotic properties, scattering theory and stability of solitary waves. Wave equations of hyperbolic, Schrodinger, and KdV type are discussed, as well as the Yang-Mills and the Vlasov-Maxwell equations. The book offers readers a broad overview of the field and an understanding of the most recent developments, as well as the status of some important unsolved problems. Intended for mathematicians and physicists interested in nonlinear waves, this book would be suitable as the basis for an advanced graduate-level course.

A Course in Mathematical Methods for Physicists

A Course in Mathematical Methods for Physicists
Author: Russell L. Herman
Publisher: CRC Press
Total Pages: 774
Release: 2013-12-04
Genre: Mathematics
ISBN: 1466584688

Based on the author's junior-level undergraduate course, this introductory textbook is designed for a course in mathematical physics. Focusing on the physics of oscillations and waves, A Course in Mathematical Methods for Physicists helps students understand the mathematical techniques needed for their future studies in physics. It takes a bottom-u

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics

Numerical Methods for Wave Equations in Geophysical Fluid Dynamics
Author: Dale R. Durran
Publisher: Springer Science & Business Media
Total Pages: 476
Release: 2013-03-14
Genre: Mathematics
ISBN: 1475730810

Covering a wide range of techniques, this book describes methods for the solution of partial differential equations which govern wave propagation and are used in modeling atmospheric and oceanic flows. The presentation establishes a concrete link between theory and practice.

Partial Differential Equations

Partial Differential Equations
Author: A. K. Nandakumaran
Publisher: Cambridge University Press
Total Pages:
Release: 2020-10-29
Genre: Mathematics
ISBN: 1108963498

Suitable for both senior undergraduate and graduate students, this is a self-contained book dealing with the classical theory of the partial differential equations through a modern approach; requiring minimal previous knowledge. It represents the solutions to three important equations of mathematical physics – Laplace and Poisson equations, Heat or diffusion equation, and wave equations in one and more space dimensions. Keen readers will benefit from more advanced topics and many references cited at the end of each chapter. In addition, the book covers advanced topics such as Conservation Laws and Hamilton-Jacobi Equation. Numerous real-life applications are interspersed throughout the book to retain readers' interest.

Introduction to Partial Differential Equations with MATLAB

Introduction to Partial Differential Equations with MATLAB
Author: Jeffery M. Cooper
Publisher: Springer Science & Business Media
Total Pages: 549
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461217547

Overview The subject of partial differential equations has an unchanging core of material but is constantly expanding and evolving. The core consists of solution methods, mainly separation of variables, for boundary value problems with constant coeffi cients in geometrically simple domains. Too often an introductory course focuses exclusively on these core problems and techniques and leaves the student with the impression that there is no more to the subject. Questions of existence, uniqueness, and well-posedness are ignored. In particular there is a lack of connection between the analytical side of the subject and the numerical side. Furthermore nonlinear problems are omitted because they are too hard to deal with analytically. Now, however, the availability of convenient, powerful computational software has made it possible to enlarge the scope of the introductory course. My goal in this text is to give the student a broader picture of the subject. In addition to the basic core subjects, I have included material on nonlinear problems and brief discussions of numerical methods. I feel that it is important for the student to see nonlinear problems and numerical methods at the beginning of the course, and not at the end when we run usually run out of time. Furthermore, numerical methods should be introduced for each equation as it is studied, not lumped together in a final chapter.

Lectures on Nonlinear Evolution Equations

Lectures on Nonlinear Evolution Equations
Author: Reinhard Racke
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2013-06-29
Genre: Mathematics
ISBN: 3663106292

This book serves as an elementary, self contained introduction into some important aspects of the theory of global solutions to initial value problems for nonlinear evolution equations. The presentation is made using the classical method of continuation of local solutions with the help of a priori estimates obtained for small data.