Wave Energy Converter Design Via A Time Domain Rankine Panel Method
Download Wave Energy Converter Design Via A Time Domain Rankine Panel Method full books in PDF, epub, and Kindle. Read online free Wave Energy Converter Design Via A Time Domain Rankine Panel Method ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Hua Li |
Publisher | : MDPI |
Total Pages | : 238 |
Release | : 2020-03-27 |
Genre | : Technology & Engineering |
ISBN | : 3039283960 |
Wave energy has a higher potential than most of the available ocean energy resources; however, it fluctuates dramatically depending on geographical and temporal baselines. The complexity of wave energy is only exacerbated by that fact that the cycle of creation, transport, and disappearance of wave energy is influenced by a wide variety of factors. This Special Issue of Energies explores the latest developments in wave energy potential, behavior, and extraction. This Special Issue introduces 1) thorough reviews on the status of wave energy development, 2) novel technologies to extract wave energy including wave energy converter design, and 3) latest methodologies applied in analyzing wave energy potentials.
Author | : Matt Folley |
Publisher | : Academic Press |
Total Pages | : 308 |
Release | : 2016-06-14 |
Genre | : Technology & Engineering |
ISBN | : 0128032111 |
Numerical Modelling of Wave Energy Converters: State-of-the Art Techniques for Single WEC and Converter Arrays presents all the information and techniques required for the numerical modelling of a wave energy converter together with a comparative review of the different available techniques. The authors provide clear details on the subject and guidance on its use for WEC design, covering topics such as boundary element methods, frequency domain models, spectral domain models, time domain models, non linear potential flow models, CFD models, semi analytical models, phase resolving wave propagation models, phase averaging wave propagation models, parametric design and control optimization, mean annual energy yield, hydrodynamic loads assessment, and environmental impact assessment. Each chapter starts by defining the fundamental principles underlying the numerical modelling technique and finishes with a discussion of the technique's limitations and a summary of the main points in the chapter. The contents of the chapters are not limited to a description of the mathematics, but also include details and discussion of the current available tools, examples available in the literature, and verification, validation, and computational requirements. In this way, the key points of each modelling technique can be identified without having to get deeply involved in the mathematical representation that is at the core of each chapter. The book is separated into four parts. The first two parts deal with modelling single wave energy converters; the third part considers the modelling of arrays; and the final part looks at the application of the different modelling techniques to the four most common uses of numerical models. It is ideal for graduate engineers and scientists interested in numerical modelling of wave energy converters, and decision-makers who must review different modelling techniques and assess their suitability and output. - Consolidates in one volume information and techniques for the numerical modelling of wave energy converters and converter arrays, which has, up until now, been spread around multiple academic journals and conference proceedings making it difficult to access - Presents a comparative review of the different numerical modelling techniques applied to wave energy converters, discussing their limitations, current available tools, examples, and verification, validation, and computational requirements - Includes practical examples and simulations available for download at the book's companion website - Identifies key points of each modelling technique without getting deeply involved in the mathematical representation
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 1039 |
Release | : 2000-03-02 |
Genre | : Science |
ISBN | : 0309065372 |
The Twenty-Second Symposium on Naval Hydrodynamics was held in Washington, D.C., from August 9-14, 1998. It coincided with the 100th anniversary of the David Taylor Model Basin. This international symposium was organized jointly by the Office of Naval Research (Mechanics and Energy Conversion S&T Division), the National Research Council (Naval Studies Board), and the Naval Surface Warfare Center, Carderock Division (David Taylor Model Basin). This biennial symposium promotes the technical exchange of naval research developments of common interest to all the countries of the world. The forum encourages both formal and informal discussion of the presented papers, and the occasion provides an opportunity for direct communication between international peers.
Author | : Alireza Khaligh |
Publisher | : CRC Press |
Total Pages | : 529 |
Release | : 2017-12-19 |
Genre | : Science |
ISBN | : 1351834029 |
Also called energy scavenging, energy harvesting captures, stores, and uses "clean" energy sources by employing interfaces, storage devices, and other units. Unlike conventional electric power generation systems, renewable energy harvesting does not use fossil fuels and the generation units can be decentralized, thereby significantly reducing transmission and distribution losses. But advanced technical methods must be developed to increase the efficiency of devices in harvesting energy from environmentally friendly, "green" resources and converting them into electrical energy. Recognizing this need, Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems describes various energy harvesting technologies, different topologies, and many types of power electronic interfaces for stand-alone utilization or grid connection of energy harvesting applications. Along with providing all the necessary concepts and theoretical background, the authors develop simulation models throughout the text to build a practical understanding of system analysis and modeling. With a focus on solar energy, the first chapter discusses the I−V characteristics of photovoltaic (PV) systems, PV models and equivalent circuits, sun tracking systems, maximum power point tracking systems, shading effects, and power electronic interfaces for grid-connected and stand-alone PV systems. It also presents sizing criteria for applications and modern solar energy applications, including residential, vehicular, naval, and space applications. The next chapter reviews different types of wind turbines and electrical machines as well as various power electronic interfaces. After explaining the energy generation technologies, optimal operation principles, and possible utilization techniques of ocean tidal energy harvesting, the book explores near- and offshore approaches for harvesting the kinetic and potential energy of ocean waves. It also describes the required absorber, turbine, and generator types, along with the power electronic interfaces for grid connection and commercialized ocean wave energy conversion applications. The final chapter deals with closed, open, and hybrid-cycle ocean thermal energy conversion systems.
Author | : Tony Burton |
Publisher | : John Wiley & Sons |
Total Pages | : 648 |
Release | : 2001-12-12 |
Genre | : Technology & Engineering |
ISBN | : 9780471489979 |
As environmental concerns have focused attention on the generation of electricity from clean and renewable sources wind energy has become the world's fastest growing energy source. The Wind Energy Handbook draws on the authors' collective industrial and academic experience to highlight the interdisciplinary nature of wind energy research and provide a comprehensive treatment of wind energy for electricity generation. Features include: An authoritative overview of wind turbine technology and wind farm design and development In-depth examination of the aerodynamics and performance of land-based horizontal axis wind turbines A survey of alternative machine architectures and an introduction to the design of the key components Description of the wind resource in terms of wind speed frequency distribution and the structure of turbulence Coverage of site wind speed prediction techniques Discussions of wind farm siting constraints and the assessment of environmental impact The integration of wind farms into the electrical power system, including power quality and system stability Functions of wind turbine controllers and design and analysis techniques With coverage ranging from practical concerns about component design to the economic importance of sustainable power sources, the Wind Energy Handbook will be an asset to engineers, turbine designers, wind energy consultants and graduate engineering students.
Author | : Joan Batlle |
Publisher | : Elsevier |
Total Pages | : 330 |
Release | : 2004 |
Genre | : Science |
ISBN | : 9780080440330 |
The papers presented in this volume cover recent progress in applications of new theory on manoeuvring-related problems for surface ships and control and sensor problems for underwater vehicles.
Author | : |
Publisher | : |
Total Pages | : 344 |
Release | : 1967 |
Genre | : Aeronautics |
ISBN | : |
Author | : A. Marinò |
Publisher | : IOS Press |
Total Pages | : 1078 |
Release | : 2018-06-22 |
Genre | : Technology & Engineering |
ISBN | : 1614998701 |
In 1974, a scientific conference covering marine automation group and large vessels issues was organized under the patronage of the Technical Naval Studies Centre (CETENA) and the Italian National Research Council (CNR). A later collaboration with the Marine Technical Association (ATENA) led to the renaming of the conference as NAV, extending the topics covered to the technical field previously covered by ATENA national conferences. The NAV conference is now held every 3 years, and attracts specialists from all over the world. This book presents the proceedings of NAV 2018, held in Trieste, Italy, in June 2018. The book contains 70 scientific papers, 35 technical papers and 16 reviews, and subjects covered include: comfort on board; conceptual and practical ship design; deep sea mining and marine robotics; protection of the environment; renewable marine energy; design and engineering of offshore vessels; digitalization, unmanned vehicles and cyber security; yacht and pleasure craft design and inland waterway vessels. With its comprehensive coverage of scientific and technical maritime issues, the book will be of interest to all those involved in this important industry.
Author | : Mathew Sathyajith |
Publisher | : Springer Science & Business Media |
Total Pages | : 253 |
Release | : 2006-03-14 |
Genre | : Technology & Engineering |
ISBN | : 3540309063 |
Growing energy demand and environmental consciousness have re-evoked human interest in wind energy. As a result, wind is the fastest growing energy source in the world today. Policy frame works and action plans have already been for- lated at various corners for meeting at least 20 per cent of the global energy - mand with new-renewables by 2010, among which wind is going to be the major player. In view of the rapid growth of wind industry, Universities, all around the world, have given due emphasis to wind energy technology in their undergraduate and graduate curriculum. These academic programmes attract students from diver- fied backgrounds, ranging from social science to engineering and technology. Fundamentals of wind energy conversion, which is discussed in the preliminary chapters of this book, have these students as the target group. Advanced resource analysis tools derived and applied are beneficial to academics and researchers working in this area. The Wind Energy Resource Analysis (WERA) software, provided with the book, is an effective tool for wind energy practitioners for - sessing the energy potential and simulating turbine performance at prospective sites.
Author | : Joao Cruz |
Publisher | : Springer |
Total Pages | : 0 |
Release | : 2010-11-22 |
Genre | : Technology & Engineering |
ISBN | : 9783642094316 |
The authors of this timely reference provide an updated and global view on ocean wave energy conversion – and they do so for wave energy developers as well as for students and professors. The book is orientated to the practical solutions that this new industry has found so far and the problems that any device needs to face. It describes the actual principles applied to machines that convert wave power to electricity and examines state-of-the-art modern systems.