Statistical Methods in Water Resources

Statistical Methods in Water Resources
Author: D.R. Helsel
Publisher: Elsevier
Total Pages: 539
Release: 1993-03-03
Genre: Science
ISBN: 0080875084

Data on water quality and other environmental issues are being collected at an ever-increasing rate. In the past, however, the techniques used by scientists to interpret this data have not progressed as quickly. This is a book of modern statistical methods for analysis of practical problems in water quality and water resources.The last fifteen years have seen major advances in the fields of exploratory data analysis (EDA) and robust statistical methods. The 'real-life' characteristics of environmental data tend to drive analysis towards the use of these methods. These advances are presented in a practical and relevant format. Alternate methods are compared, highlighting the strengths and weaknesses of each as applied to environmental data. Techniques for trend analysis and dealing with water below the detection limit are topics covered, which are of great interest to consultants in water-quality and hydrology, scientists in state, provincial and federal water resources, and geological survey agencies.The practising water resources scientist will find the worked examples using actual field data from case studies of environmental problems, of real value. Exercises at the end of each chapter enable the mechanics of the methodological process to be fully understood, with data sets included on diskette for easy use. The result is a book that is both up-to-date and immediately relevant to ongoing work in the environmental and water sciences.

Water Resources Basic-data Program

Water Resources Basic-data Program
Author: United States. Congress. House. Committee on Public Lands. Subcommittee on Irrigation and Reclamation
Publisher:
Total Pages: 100
Release: 1950
Genre: Water resources development
ISBN:

Estimating Water Use in the United States

Estimating Water Use in the United States
Author: National Research Council
Publisher: National Academies Press
Total Pages: 190
Release: 2002-08-22
Genre: Science
ISBN: 0309169143

Across the United States, the practices for collecting water use data vary significantly from state to state and vary also from one water use category to another, in response to the laws regulating water use and interest in water use data as an input for water management. However, many rich bodies of water use data exist at the state level, and an outstanding opportunity exists for assembling and statistically analyzing these data at the national level. This would lead to better techniques for water use estimation and to a greater capacity to link water use with its impact on water resources. This report is a product of the Committee on Water Resources Research, which provides consensus advice to the Water Resources Division (WRD) of the USGS on scientific, research, and programmatic issues. The committee works under the auspices of the Water Science and Technology Board of the National Research Council (NRC). The committee considers a variety of topics that are important scientifically and programmatically to the USGS and the nation and issues reports when appropriate. This report concerns the National Water-Use Information Program (NWUIP).

Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering

Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering
Author: Shahab Araghinejad
Publisher: Springer Science & Business Media
Total Pages: 299
Release: 2013-11-26
Genre: Science
ISBN: 9400775067

“Data-Driven Modeling: Using MATLAB® in Water Resources and Environmental Engineering” provides a systematic account of major concepts and methodologies for data-driven models and presents a unified framework that makes the subject more accessible to and applicable for researchers and practitioners. It integrates important theories and applications of data-driven models and uses them to deal with a wide range of problems in the field of water resources and environmental engineering such as hydrological forecasting, flood analysis, water quality monitoring, regionalizing climatic data, and general function approximation. The book presents the statistical-based models including basic statistical analysis, nonparametric and logistic regression methods, time series analysis and modeling, and support vector machines. It also deals with the analysis and modeling based on artificial intelligence techniques including static and dynamic neural networks, statistical neural networks, fuzzy inference systems, and fuzzy regression. The book also discusses hybrid models as well as multi-model data fusion to wrap up the covered models and techniques. The source files of relatively simple and advanced programs demonstrating how to use the models are presented together with practical advice on how to best apply them. The programs, which have been developed using the MATLAB® unified platform, can be found on extras.springer.com. The main audience of this book includes graduate students in water resources engineering, environmental engineering, agricultural engineering, and natural resources engineering. This book may be adapted for use as a senior undergraduate and graduate textbook by focusing on selected topics. Alternatively, it may also be used as a valuable resource book for practicing engineers, consulting engineers, scientists and others involved in water resources and environmental engineering.