Walter Gautschi, Volume 2

Walter Gautschi, Volume 2
Author: Claude Brezinski
Publisher: Springer Science & Business Media
Total Pages: 921
Release: 2013-10-22
Genre: Mathematics
ISBN: 1461470498

Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi

Walter Gautschi, Volume 3

Walter Gautschi, Volume 3
Author: Claude Brezinski
Publisher: Springer Science & Business Media
Total Pages: 770
Release: 2013-10-24
Genre: Mathematics
ISBN: 146147132X

Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi

Walter Gautschi, Volume 1

Walter Gautschi, Volume 1
Author: Claude Brezinski
Publisher: Springer Science & Business Media
Total Pages: 700
Release: 2013-10-22
Genre: Mathematics
ISBN: 146147034X

Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurely deceased twin brother. This title will appeal to graduate students and researchers in numerical analysis, as well as to historians of science. Selected Works with Commentaries, Vol. 1 Numerical Conditioning Special Functions Interpolation and Approximation Selected Works with Commentaries, Vol. 2 Orthogonal Polynomials on the Real Line Orthogonal Polynomials on the Semicircle Chebyshev Quadrature Kronrod and Other Quadratures Gauss-type Quadrature Selected Works with Commentaries, Vol. 3 Linear Difference Equations Ordinary Differential Equations Software History and Biography Miscellanea Works of Werner Gautschi

Numerical Analysis

Numerical Analysis
Author: Walter Gautschi
Publisher: Springer Science & Business Media
Total Pages: 611
Release: 2011-12-06
Genre: Mathematics
ISBN: 0817682597

Revised and updated, this second edition of Walter Gautschi's successful Numerical Analysis explores computational methods for problems arising in the areas of classical analysis, approximation theory, and ordinary differential equations, among others. Topics included in the book are presented with a view toward stressing basic principles and maintaining simplicity and teachability as far as possible, while subjects requiring a higher level of technicality are referenced in detailed bibliographic notes at the end of each chapter. Readers are thus given the guidance and opportunity to pursue advanced modern topics in more depth. Along with updated references, new biographical notes, and enhanced notational clarity, this second edition includes the expansion of an already large collection of exercises and assignments, both the kind that deal with theoretical and practical aspects of the subject and those requiring machine computation and the use of mathematical software. Perhaps most notably, the edition also comes with a complete solutions manual, carefully developed and polished by the author, which will serve as an exceptionally valuable resource for instructors.

Series and Products in the Development of Mathematics: Volume 2

Series and Products in the Development of Mathematics: Volume 2
Author: Ranjan Roy
Publisher: Cambridge University Press
Total Pages: 480
Release: 2021-03-18
Genre: Mathematics
ISBN: 1108573150

This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.

Progress in Approximation Theory and Applicable Complex Analysis

Progress in Approximation Theory and Applicable Complex Analysis
Author: Narendra Kumar Govil
Publisher: Springer
Total Pages: 541
Release: 2017-04-03
Genre: Mathematics
ISBN: 331949242X

Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934–2013) of the Université de Montréal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.

Applications and Computation of Orthogonal Polynomials

Applications and Computation of Orthogonal Polynomials
Author: Walter Gautschi
Publisher: Birkhäuser
Total Pages: 275
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3034886853

This volume contains a collection of papers dealing with applications of orthogonal polynomials and methods for their computation, of interest to a wide audience of numerical analysts, engineers, and scientists. The applications address problems in applied mathematics as well as problems in engineering and the sciences.

Orthogonal Polynomials

Orthogonal Polynomials
Author: Walter Gautschi
Publisher: Oxford University Press on Demand
Total Pages: 301
Release: 2004
Genre: Mathematics
ISBN: 9780198506720

This is the first book on constructive methods for, and applications of orthogonal polynomials, and the first available collection of relevant Matlab codes. The book begins with a concise introduction to the theory of polynomials orthogonal on the real line (or a portion thereof), relative to a positive measure of integration. Topics which are particularly relevant to computation are emphasized. The second chapter develops computational methods for generating the coefficients in the basic three-term recurrence relation. The methods are of two kinds: moment-based methods and discretization methods. The former are provided with a detailed sensitivity analysis. Other topics addressed concern Cauchy integrals of orthogonal polynomials and their computation, a new discussion of modification algorithms, and the generation of Sobolev orthogonal polynomials. The final chapter deals with selected applications: the numerical evaluation of integrals, especially by Gauss-type quadrature methods, polynomial least squares approximation, moment-preserving spline approximation, and the summation of slowly convergent series. Detailed historic and bibliographic notes are appended to each chapter. The book will be of interest not only to mathematicians and numerical analysts, but also to a wide clientele of scientists and engineers who perceive a need for applying orthogonal polynomials.

Polynomial Sequences

Polynomial Sequences
Author: Francesco Aldo Costabile
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 526
Release: 2023-12-18
Genre: Mathematics
ISBN: 3110757249

Polynomials are useful mathematical tools. They are simply defined and can be calculated quickly on computer systems. They can be differentiated and integrated easily and can be pieced together to form spline curves. After Weierstrass approximation Theorem, polynomial sequences have acquired considerable importance not only in the various branches of Mathematics, but also in Physics, Chemistry and Engineering disciplines. There is a wide literature on specific polynomial sequences. But there is no literature that attempts a systematic exposition of the main basic methods for the study of a generic polynomial sequence and, at the same time, gives an overview of the main polynomial classes and related applications, at least in numerical analysis. In this book, through an elementary matrix calculus-based approach, an attempt is made to fill this gap by exposing dated and very recent results, both theoretical and applied.

Computational Integration

Computational Integration
Author: Arnold R. Krommer
Publisher: SIAM
Total Pages: 464
Release: 1998-01-01
Genre: Mathematics
ISBN: 9781611971460

This survey covers a wide range of topics fundamental to calculating integrals on computer systems and discusses both the theoretical and computational aspects of numerical and symbolic methods. It includes extensive sections on one- and multidimensional integration formulas, like polynomial, number-theoretic, and pseudorandom formulas, and deals with issues concerning the construction of numerical integration algorithms.