Vlsi For Artificial Intelligence And Neural Networks
Download Vlsi For Artificial Intelligence And Neural Networks full books in PDF, epub, and Kindle. Read online free Vlsi For Artificial Intelligence And Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Jose G. Delgado-Frias |
Publisher | : Springer Science & Business Media |
Total Pages | : 411 |
Release | : 2012-12-06 |
Genre | : Computers |
ISBN | : 1461537525 |
This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.
Author | : Sandeep Saini |
Publisher | : CRC Press |
Total Pages | : 329 |
Release | : 2021-12-30 |
Genre | : Technology & Engineering |
ISBN | : 1000523810 |
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Features: Provides the details of state-of-the-art machine learning methods used in VLSI design Discusses hardware implementation and device modeling pertaining to machine learning algorithms Explores machine learning for various VLSI architectures and reconfigurable computing Illustrates the latest techniques for device size and feature optimization Highlights the latest case studies and reviews of the methods used for hardware implementation This book is aimed at researchers, professionals, and graduate students in VLSI, machine learning, electrical and electronic engineering, computer engineering, and hardware systems.
Author | : Bing J. Sheu |
Publisher | : Springer Science & Business Media |
Total Pages | : 569 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461522471 |
Neural Information Processing and VLSI provides a unified treatment of this important subject for use in classrooms, industry, and research laboratories, in order to develop advanced artificial and biologically-inspired neural networks using compact analog and digital VLSI parallel processing techniques. Neural Information Processing and VLSI systematically presents various neural network paradigms, computing architectures, and the associated electronic/optical implementations using efficient VLSI design methodologies. Conventional digital machines cannot perform computationally-intensive tasks with satisfactory performance in such areas as intelligent perception, including visual and auditory signal processing, recognition, understanding, and logical reasoning (where the human being and even a small living animal can do a superb job). Recent research advances in artificial and biological neural networks have established an important foundation for high-performance information processing with more efficient use of computing resources. The secret lies in the design optimization at various levels of computing and communication of intelligent machines. Each neural network system consists of massively paralleled and distributed signal processors with every processor performing very simple operations, thus consuming little power. Large computational capabilities of these systems in the range of some hundred giga to several tera operations per second are derived from collectively parallel processing and efficient data routing, through well-structured interconnection networks. Deep-submicron very large-scale integration (VLSI) technologies can integrate tens of millions of transistors in a single silicon chip for complex signal processing and information manipulation. The book is suitable for those interested in efficient neurocomputing as well as those curious about neural network system applications. It has been especially prepared for use as a text for advanced undergraduate and first year graduate students, and is an excellent reference book for researchers and scientists working in the fields covered.
Author | : Jose G. Delgado-Frias |
Publisher | : Springer Science & Business Media |
Total Pages | : 318 |
Release | : 2013-06-29 |
Genre | : Computers |
ISBN | : 1489913319 |
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
Author | : Carver Mead |
Publisher | : Addison Wesley Publishing Company |
Total Pages | : 416 |
Release | : 1989 |
Genre | : Computers |
ISBN | : |
A self-contained text, suitable for a broad audience. Presents basic concepts in electronics, transistor physics, and neurobiology for readers without backgrounds in those areas. Annotation copyrighted by Book News, Inc., Portland, OR
Author | : Ibrahim (Abe) M. Elfadel |
Publisher | : Springer |
Total Pages | : 697 |
Release | : 2019-03-15 |
Genre | : Technology & Engineering |
ISBN | : 3030046664 |
This book provides readers with an up-to-date account of the use of machine learning frameworks, methodologies, algorithms and techniques in the context of computer-aided design (CAD) for very-large-scale integrated circuits (VLSI). Coverage includes the various machine learning methods used in lithography, physical design, yield prediction, post-silicon performance analysis, reliability and failure analysis, power and thermal analysis, analog design, logic synthesis, verification, and neuromorphic design. Provides up-to-date information on machine learning in VLSI CAD for device modeling, layout verifications, yield prediction, post-silicon validation, and reliability; Discusses the use of machine learning techniques in the context of analog and digital synthesis; Demonstrates how to formulate VLSI CAD objectives as machine learning problems and provides a comprehensive treatment of their efficient solutions; Discusses the tradeoff between the cost of collecting data and prediction accuracy and provides a methodology for using prior data to reduce cost of data collection in the design, testing and validation of both analog and digital VLSI designs. From the Foreword As the semiconductor industry embraces the rising swell of cognitive systems and edge intelligence, this book could serve as a harbinger and example of the osmosis that will exist between our cognitive structures and methods, on the one hand, and the hardware architectures and technologies that will support them, on the other....As we transition from the computing era to the cognitive one, it behooves us to remember the success story of VLSI CAD and to earnestly seek the help of the invisible hand so that our future cognitive systems are used to design more powerful cognitive systems. This book is very much aligned with this on-going transition from computing to cognition, and it is with deep pleasure that I recommend it to all those who are actively engaged in this exciting transformation. Dr. Ruchir Puri, IBM Fellow, IBM Watson CTO & Chief Architect, IBM T. J. Watson Research Center
Author | : Sankar K. Pal |
Publisher | : World Scientific |
Total Pages | : 421 |
Release | : 2002 |
Genre | : Computers |
ISBN | : 981277808X |
Neural networks (NNs) and systolic arrays (SAs) have many similar features. This volume describes, in a unified way, the basic concepts, theories and characteristic features of integrating or formulating different facets of NNs and SAs, as well as presents recent developments and significant applications. The articles, written by experts from all over the world, demonstrate the various ways this integration can be made to efficiently design methodologies, algorithms and architectures, and also implementations, for NN applications. The book will be useful to graduate students and researchers in many related areas, not only as a reference book but also as a textbook for some parts of the curriculum. It will also benefit researchers and practitioners in industry and R&D laboratories who are working in the fields of system design, VLSI, parallel processing, neural networks, and vision.
Author | : Carver Mead |
Publisher | : Springer Science & Business Media |
Total Pages | : 250 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461316391 |
This volume contains the proceedings of a workshop on Analog Integrated Neural Systems held May 8, 1989, in connection with the International Symposium on Circuits and Systems. The presentations were chosen to encompass the entire range of topics currently under study in this exciting new discipline. Stringent acceptance requirements were placed on contributions: (1) each description was required to include detailed characterization of a working chip, and (2) each design was not to have been published previously. In several cases, the status of the project was not known until a few weeks before the meeting date. As a result, some of the most recent innovative work in the field was presented. Because this discipline is evolving rapidly, each project is very much a work in progress. Authors were asked to devote considerable attention to the shortcomings of their designs, as well as to the notable successes they achieved. In this way, other workers can now avoid stumbling into the same traps, and evolution can proceed more rapidly (and less painfully). The chapters in this volume are presented in the same order as the corresponding presentations at the workshop. The first two chapters are concerned with fmding solutions to complex optimization problems under a predefmed set of constraints. The first chapter reports what is, to the best of our knowledge, the first neural-chip design. In each case, the physics of the underlying electronic medium is used to represent a cost function in a natural way, using only nearest-neighbor connectivity.
Author | : Jose G. Delgado-Frias |
Publisher | : Springer Science & Business Media |
Total Pages | : 285 |
Release | : 2012-12-06 |
Genre | : Technology & Engineering |
ISBN | : 1461316197 |
Author | : Keshab K. Parhi |
Publisher | : John Wiley & Sons |
Total Pages | : 960 |
Release | : 2007 |
Genre | : |
ISBN | : 9788126510986 |
Market_Desc: · Students in graduate level courses· Electrical Engineers· Computer Scientists· Computer Architecture Designers· Circuit Designers· Algorithm Designers· System Designers· Computer Programmers in the Multimedia and Wireless Communications Industries· VLSI System Designers Special Features: This example-packed resource provides invaluable professional training for a rapidly-expanding industry. · Presents a variety of approaches to analysis, estimation, and reduction of power consumption in order to help designers extend battery life.· Includes application-driven problems at the end of each chapter· Features six appendices covering shortest path algorithms used in retiming, scheduling, and allocation techniques, as well as determining the iteration bound· The Author is a recognized expert in the field, having written several books, taught several graduate-level classes, and served on several IEEE boards About The Book: This book complements the other Digital Signaling Processing books in our list, which include an introductory treatment (Marven), a comprehensive handbook (Mitra), a professional reference (Kaloupsidis), and others which pertain to a specific topic such as noise control. This graduate level textbook will fill an important niche in a rapidly expanding market.