VLSI Fabrication Principles

VLSI Fabrication Principles
Author: Sorab Khushro Ghandhi
Publisher: John Wiley & Sons
Total Pages: 690
Release: 1983
Genre: Science
ISBN:

Fully updated with the latest technologies, this edition covers the fundamental principles underlying fabrication processes for semiconductor devices along with integrated circuits made from silicon and gallium arsenide. Stresses fabrication criteria for such circuits as CMOS, bipolar, MOS, FET, etc. These diverse technologies are introduced separately and then consolidated into complete circuits. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

VLSI Fabrication Principles

VLSI Fabrication Principles
Author: Sorab Khushro Ghandhi
Publisher: Wiley-Interscience
Total Pages: 876
Release: 1994-03-28
Genre: Technology & Engineering
ISBN:

In some places, the order of presentation has been changed to fine-tune the book's effectiveness as a senior and graduate-level teaching text. Fabrication principles covered include those for such circuits as CMOS, BIPOLAR, BICMOS, FET, and more.

VLSI Fabrication Principles

VLSI Fabrication Principles
Author: Sorab K. Ghandhi
Publisher: John Wiley & Sons
Total Pages: 870
Release: 1994-03-31
Genre: Technology & Engineering
ISBN: 0471580058

Fully updated with the latest technologies, this edition covers thefundamental principles underlying fabrication processes forsemiconductor devices along with integrated circuits made fromsilicon and gallium arsenide. Stresses fabrication criteria forsuch circuits as CMOS, bipolar, MOS, FET, etc. These diversetechnologies are introduced separately and then consolidated intocomplete circuits. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Fundamentals of Modern VLSI Devices

Fundamentals of Modern VLSI Devices
Author: Yuan Taur
Publisher: Cambridge University Press
Total Pages: 0
Release: 2013-05-02
Genre: Technology & Engineering
ISBN: 9781107635715

Learn the basic properties and designs of modern VLSI devices, as well as the factors affecting performance, with this thoroughly updated second edition. The first edition has been widely adopted as a standard textbook in microelectronics in many major US universities and worldwide. The internationally renowned authors highlight the intricate interdependencies and subtle trade-offs between various practically important device parameters, and provide an in-depth discussion of device scaling and scaling limits of CMOS and bipolar devices. Equations and parameters provided are checked continuously against the reality of silicon data, making the book equally useful in practical transistor design and in the classroom. Every chapter has been updated to include the latest developments, such as MOSFET scale length theory, high-field transport model and SiGe-base bipolar devices.

Introduction to Microfabrication

Introduction to Microfabrication
Author: Sami Franssila
Publisher: John Wiley & Sons
Total Pages: 424
Release: 2005-01-28
Genre: Technology & Engineering
ISBN: 0470020563

Microfabrication is the key technology behind integrated circuits,microsensors, photonic crystals, ink jet printers, solar cells andflat panel displays. Microsystems can be complex, but the basicmicrostructures and processes of microfabrication are fairlysimple. Introduction to Microfabrication shows how the commonmicrofabrication concepts can be applied over and over again tocreate devices with a wide variety of structures andfunctions. Featuring: * A comprehensive presentation of basic fabrication processes * An emphasis on materials and microstructures, rather than devicephysics * In-depth discussion on process integration showing how processes,materials and devices interact * A wealth of examples of both conceptual and real devices Introduction to Microfabrication includes 250 homework problems forstudents to familiarise themselves with micro-scale materials,dimensions, measurements, costs and scaling trends. Both researchand manufacturing topics are covered, with an emphasis on silicon,which is the workhorse of microfabrication. This book will serve as an excellent first text for electricalengineers, chemists, physicists and materials scientists who wishto learn about microstructures and microfabrication techniques,whether in MEMS, microelectronics or emerging applications.

Semiconductor Material and Device Characterization

Semiconductor Material and Device Characterization
Author: Dieter K. Schroder
Publisher: John Wiley & Sons
Total Pages: 800
Release: 2015-06-29
Genre: Technology & Engineering
ISBN: 0471739065

This Third Edition updates a landmark text with the latest findings The Third Edition of the internationally lauded Semiconductor Material and Device Characterization brings the text fully up-to-date with the latest developments in the field and includes new pedagogical tools to assist readers. Not only does the Third Edition set forth all the latest measurement techniques, but it also examines new interpretations and new applications of existing techniques. Semiconductor Material and Device Characterization remains the sole text dedicated to characterization techniques for measuring semiconductor materials and devices. Coverage includes the full range of electrical and optical characterization methods, including the more specialized chemical and physical techniques. Readers familiar with the previous two editions will discover a thoroughly revised and updated Third Edition, including: Updated and revised figures and examples reflecting the most current data and information 260 new references offering access to the latest research and discussions in specialized topics New problems and review questions at the end of each chapter to test readers' understanding of the material In addition, readers will find fully updated and revised sections in each chapter. Plus, two new chapters have been added: Charge-Based and Probe Characterization introduces charge-based measurement and Kelvin probes. This chapter also examines probe-based measurements, including scanning capacitance, scanning Kelvin force, scanning spreading resistance, and ballistic electron emission microscopy. Reliability and Failure Analysis examines failure times and distribution functions, and discusses electromigration, hot carriers, gate oxide integrity, negative bias temperature instability, stress-induced leakage current, and electrostatic discharge. Written by an internationally recognized authority in the field, Semiconductor Material and Device Characterization remains essential reading for graduate students as well as for professionals working in the field of semiconductor devices and materials. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Fundamentals of Semiconductor Manufacturing and Process Control

Fundamentals of Semiconductor Manufacturing and Process Control
Author: Gary S. May
Publisher: John Wiley & Sons
Total Pages: 428
Release: 2006-05-26
Genre: Technology & Engineering
ISBN: 0471790273

A practical guide to semiconductor manufacturing from processcontrol to yield modeling and experimental design Fundamentals of Semiconductor Manufacturing and Process Controlcovers all issues involved in manufacturing microelectronic devicesand circuits, including fabrication sequences, process control,experimental design, process modeling, yield modeling, and CIM/CAMsystems. Readers are introduced to both the theory and practice ofall basic manufacturing concepts. Following an overview of manufacturing and technology, the textexplores process monitoring methods, including those that focus onproduct wafers and those that focus on the equipment used toproduce wafers. Next, the text sets forth some fundamentals ofstatistics and yield modeling, which set the foundation for adetailed discussion of how statistical process control is used toanalyze quality and improve yields. The discussion of statistical experimental design offers readers apowerful approach for systematically varying controllable processconditions and determining their impact on output parameters thatmeasure quality. The authors introduce process modeling concepts,including several advanced process control topics such asrun-by-run, supervisory control, and process and equipmentdiagnosis. Critical coverage includes the following: * Combines process control and semiconductor manufacturing * Unique treatment of system and software technology and managementof overall manufacturing systems * Chapters include case studies, sample problems, and suggestedexercises * Instructor support includes electronic copies of the figures andan instructor's manual Graduate-level students and industrial practitioners will benefitfrom the detailed exami?nation of how electronic materials andsupplies are converted into finished integrated circuits andelectronic products in a high-volume manufacturingenvironment. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment. An Instructor Support FTP site is also available.

Fabrication Engineering at the Micro and Nanoscale

Fabrication Engineering at the Micro and Nanoscale
Author: Stephen A. Campbell
Publisher: OUP USA
Total Pages: 0
Release: 2008-01-10
Genre: Technology & Engineering
ISBN: 9780195320176

Designed for advanced undergraduate or first-year graduate courses in semiconductor or microelectronic fabrication, the third edition of Fabrication Engineering at the Micro and Nanoscale provides a thorough and accessible introduction to all fields of micro and nano fabrication.

Silicon Wet Bulk Micromachining for MEMS

Silicon Wet Bulk Micromachining for MEMS
Author: Prem Pal
Publisher: CRC Press
Total Pages: 315
Release: 2017-04-07
Genre: Science
ISBN: 1315341271

Microelectromechanical systems (MEMS)-based sensors and actuators have become remarkably popular in the past few decades. Rapid advances have taken place in terms of both technologies and techniques of fabrication of MEMS structures. Wet chemical–based silicon bulk micromachining continues to be a widely used technique for the fabrication of microstructures used in MEMS devices. Researchers all over the world have contributed significantly to the advancement of wet chemical–based micromachining, from understanding the etching mechanism to exploring its application to the fabrication of simple to complex MEMS structures. In addition to its various benefits, one of the unique features of wet chemical–based bulk micromachining is the ability to fabricate slanted sidewalls, such as 45° walls as micromirrors, as well as freestanding structures, such as cantilevers and diaphragms. This makes wet bulk micromachining necessary for the fabrication of structures for myriad applications. This book provides a comprehensive understating of wet bulk micromachining for the fabrication of simple to advanced microstructures for various applications in MEMS. It includes introductory to advanced concepts and covers research on basic and advanced topics on wet chemical–based silicon bulk micromachining. The book thus serves as an introductory textbook for undergraduate- and graduate-level students of physics, chemistry, electrical and electronic engineering, materials science, and engineering, as well as a comprehensive reference for researchers working or aspiring to work in the area of MEMS and for engineers working in microfabrication technology.