Generalized Vertex Algebras and Relative Vertex Operators

Generalized Vertex Algebras and Relative Vertex Operators
Author: Chongying Dong
Publisher: Springer Science & Business Media
Total Pages: 207
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461203538

The rapidly-evolving theory of vertex operator algebras provides deep insight into many important algebraic structures. Vertex operator algebras can be viewed as "complex analogues" of both Lie algebras and associative algebras. The monograph is written in a n accessible and self-contained manner, with detailed proofs and with many examples interwoven through the axiomatic treatment as motivation and applications. It will be useful for research mathematicians and theoretical physicists working the such fields as representation theory and algebraic structure sand will provide the basis for a number of graduate courses and seminars on these and related topics.

Vertex Algebras and Algebraic Curves

Vertex Algebras and Algebraic Curves
Author: Edward Frenkel
Publisher: American Mathematical Soc.
Total Pages: 418
Release: 2004-08-25
Genre: Mathematics
ISBN: 0821836749

Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.

Introduction to Vertex Operator Algebras and Their Representations

Introduction to Vertex Operator Algebras and Their Representations
Author: James Lepowsky
Publisher: Springer Science & Business Media
Total Pages: 330
Release: 2012-12-06
Genre: Mathematics
ISBN: 0817681868

* Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.

Vertex Operator Algebras and the Monster

Vertex Operator Algebras and the Monster
Author: Igor Frenkel
Publisher: Academic Press
Total Pages: 563
Release: 1989-05-01
Genre: Mathematics
ISBN: 0080874541

This work is motivated by and develops connections between several branches of mathematics and physics--the theories of Lie algebras, finite groups and modular functions in mathematics, and string theory in physics. The first part of the book presents a new mathematical theory of vertex operator algebras, the algebraic counterpart of two-dimensional holomorphic conformal quantum field theory. The remaining part constructs the Monster finite simple group as the automorphism group of a very special vertex operator algebra, called the "moonshine module" because of its relevance to "monstrous moonshine."

Vertex Algebras for Beginners

Vertex Algebras for Beginners
Author: Victor G. Kac
Publisher: American Mathematical Soc.
Total Pages: 209
Release: 1998
Genre: Mathematics
ISBN: 082181396X

Based on courses given by the author at MIT and at Rome University in spring 1997, this book presents an introduction to algebraic aspects of conformal field theory. It includes material on the foundations of a rapidly growing area of algebraic conformal theory.

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$

Spinor Construction of Vertex Operator Algebras, Triality, and $E^{(1)}_8$
Author: Alex J. Feingold
Publisher: American Mathematical Soc.
Total Pages: 158
Release: 1991
Genre: Mathematics
ISBN: 0821851284

The theory of vertex operator algebras is a remarkably rich new mathematical field which captures the algebraic content of conformal field theory in physics. Ideas leading up to this theory appeared in physics as part of statistical mechanics and string theory. In mathematics, the axiomatic definitions crystallized in the work of Borcherds and in Vertex Operator Algebras and the Monster, by Frenkel, Lepowsky, and Meurman. The structure of monodromies of intertwining operators for modules of vertex operator algebras yield braid group representations and leads to natural generalizations of vertex operator algebras, such as superalgebras and para-algebras. Many examples of vertex operator algebras and their generalizations are related to constructions in classical representation theory and shed new light on the classical theory. This book accomplishes several goals. The authors provide an explicit spinor construction, using only Clifford algebras, of a vertex operator superalgebra structure on the direct sum of the basic and vector modules for the affine Kac-Moody algebra Dn(1). They also review and extend Chevalley's spinor construction of the 24-dimensional commutative nonassociative algebraic structure and triality on the direct sum of the three 8-dimensional D4-modules. Vertex operator para-algebras, introduced and developed independently in this book and by Dong and Lepowsky, are related to one-dimensional representations of the braid group. The authors also provide a unified approach to the Chevalley, Greiss, and E8 algebras and explain some of their similarities. A Third goal is to provide a purely spinor construction of the exceptional affine Lie algebra E8(1), a natural continuation of previous work on spinor and oscillator constructions of the classical affine Lie algebras. These constructions should easily extend to include the rest of the exceptional affine Lie algebras. The final objective is to develop an inductive technique of construction which could be applied to the Monster vertex operator algebra. Directed at mathematicians and physicists, this book should be accessible to graduate students with some background in finite-dimensional Lie algebras and their representations. Although some experience with affine Kac-Moody algebras would be useful, a summary of the relevant parts of that theory is included. This book shows how the concepts and techniques of Lie theory can be generalized to yield the algebraic structures associated with conformal field theory. The careful reader will also gain a detailed knowledge of how the spinor construction of classical triality lifts to the affine algebras and plays an important role in the spinor construction of vertex operator algebras, modules, and intertwining operators with nontrivial monodromies.

The Vertex Coloring Algorithm

The Vertex Coloring Algorithm
Author: Ashay Dharwadker
Publisher: Institute of Mathematics
Total Pages: 58
Release: 2006-08-08
Genre: Mathematics
ISBN: 1466391324

We present a new polynomial-time algorithm for finding proper m-colorings of the vertices of a graph. We prove that every graph with n vertices and maximum vertex degree Delta must have chromatic number Chi(G) less than or equal to Delta+1 and that the algorithm will always find a proper m-coloring of the vertices of G with m less than or equal to Delta+1. Furthermore, we prove that this condition is the best possible in terms of n and Delta by explicitly constructing graphs for which the chromatic number is exactly Delta+1. In the special case when G is a connected simple graph and is neither an odd cycle nor a complete graph, we show that the algorithm will always find a proper m-coloring of the vertices of G with m less than or equal to Delta. In the process, we obtain a new constructive proof of Brooks' famous theorem of 1941. For all known examples of graphs, the algorithm finds a proper m-coloring of the vertices of the graph G for m equal to the chromatic number Chi(G). In view of the importance of the P versus NP question, we ask: does there exist a graph G for which this algorithm cannot find a proper m-coloring of the vertices of G with m equal to the chromatic number Chi(G)? The algorithm is demonstrated with several examples of famous graphs, including a proper four-coloring of the map of India and two large Mycielski benchmark graphs with hidden minimum vertex colorings. We implement the algorithm in C++ and provide a demonstration program for Microsoft Windows.

Vertex Operators in Mathematics and Physics

Vertex Operators in Mathematics and Physics
Author: J. Lepowsky
Publisher: Springer Science & Business Media
Total Pages: 484
Release: 2013-03-08
Genre: Science
ISBN: 146139550X

James Lepowsky t The search for symmetry in nature has for a long time provided representation theory with perhaps its chief motivation. According to the standard approach of Lie theory, one looks for infinitesimal symmetry -- Lie algebras of operators or concrete realizations of abstract Lie algebras. A central theme in this volume is the construction of affine Lie algebras using formal differential operators called vertex operators, which originally appeared in the dual-string theory. Since the precise description of vertex operators, in both mathematical and physical settings, requires a fair amount of notation, we do not attempt it in this introduction. Instead we refer the reader to the papers of Mandelstam, Goddard-Olive, Lepowsky-Wilson and Frenkel-Lepowsky-Meurman. We have tried to maintain consistency of terminology and to some extent notation in the articles herein. To help the reader we shall review some of the terminology. We also thought it might be useful to supplement an earlier fairly detailed exposition of ours [37] with a brief historical account of vertex operators in mathematics and their connection with affine algebras. Since we were involved in the development of the subject, the reader should be advised that what follows reflects our own understanding. For another view, see [29].1 t Partially supported by the National Science Foundation through the Mathematical Sciences Research Institute and NSF Grant MCS 83-01664. 1 We would like to thank Igor Frenkel for his valuable comments on the first draft of this introduction.

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors

Pattern Recognition, Tracking and Vertex Reconstruction in Particle Detectors
Author: Rudolf Frühwirth
Publisher: Springer Nature
Total Pages: 208
Release: 2021
Genre: Electronic books
ISBN: 303065771X

This open access book is a comprehensive review of the methods and algorithms that are used in the reconstruction of events recorded by past, running and planned experiments at particle accelerators such as the LHC, SuperKEKB and FAIR. The main topics are pattern recognition for track and vertex finding, solving the equations of motion by analytical or numerical methods, treatment of material effects such as multiple Coulomb scattering and energy loss, and the estimation of track and vertex parameters by statistical algorithms. The material covers both established methods and recent developments in these fields and illustrates them by outlining exemplary solutions developed by selected experiments. The clear presentation enables readers to easily implement the material in a high-level programming language. It also highlights software solutions that are in the public domain whenever possible. It is a valuable resource for PhD students and researchers working on online or offline reconstruction for their experiments.

Discrete Mathematics

Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
Total Pages: 238
Release: 2018-07-30
Genre:
ISBN: 9781724572639

Note: This is a custom edition of Levin's full Discrete Mathematics text, arranged specifically for use in a discrete math course for future elementary and middle school teachers. (It is NOT a new and updated edition of the main text.)This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this.Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs.While there are many fine discrete math textbooks available, this text has the following advantages: - It is written to be used in an inquiry rich course.- It is written to be used in a course for future math teachers.- It is open source, with low cost print editions and free electronic editions.