Fundamentals of Clinical Data Science

Fundamentals of Clinical Data Science
Author: Pieter Kubben
Publisher: Springer
Total Pages: 219
Release: 2018-12-21
Genre: Medical
ISBN: 3319997130

This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code”and will explain the topics in a style that is optimized for a healthcare audience.

Developing Pavement Performance Prediction Models and Decision Trees for the City of Cincinnati

Developing Pavement Performance Prediction Models and Decision Trees for the City of Cincinnati
Author: Arudi Rajagopal
Publisher:
Total Pages: 48
Release: 2006
Genre: Pavements
ISBN:

This report presents the details of a study conducted to develop pavement performance prediction models and decision trees for various families of pavements, using the data available with the City of Cincinnati. Required data was acquired from city's pavement inventory database. The road network was divided into two classifications namely, major roads and minor roads. These roads were further grouped based on their structural makeup. Statistical regression models were developed for each group. A decision tree was developed to suggest appropriate maintenance and rehabilitation activities based on the condition of the pavement. The city engineers can use these models in conjunction with their pavement management system to predict the future condition of the highway network in Cincinnati and to implement cost effective pavement management solutions. Using the methodology developed in this study, the engineers can also further improve the accuracy of the models in the future.