Vector Analysis With Applications
Download Vector Analysis With Applications full books in PDF, epub, and Kindle. Read online free Vector Analysis With Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : A. I. Borisenko |
Publisher | : Courier Corporation |
Total Pages | : 292 |
Release | : 2012-08-28 |
Genre | : Mathematics |
ISBN | : 0486131904 |
Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.
Author | : C. E. Springer |
Publisher | : Courier Corporation |
Total Pages | : 258 |
Release | : 2013-09-26 |
Genre | : Mathematics |
ISBN | : 048632091X |
Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.
Author | : Michael J. Crowe |
Publisher | : Courier Corporation |
Total Pages | : 306 |
Release | : 1994-01-01 |
Genre | : Mathematics |
ISBN | : 0486679101 |
Prize-winning study traces the rise of the vector concept from the discovery of complex numbers through the systems of hypercomplex numbers to the final acceptance around 1910 of the modern system of vector analysis.
Author | : Louis Brand |
Publisher | : Courier Corporation |
Total Pages | : 306 |
Release | : 2012-06-22 |
Genre | : Mathematics |
ISBN | : 048615484X |
This text was designed as a short introductory course to give students the tools of vector algebra and calculus, as well as a brief glimpse into the subjects' manifold applications. 1957 edition. 86 figures.
Author | : Homer E. Newell |
Publisher | : Courier Corporation |
Total Pages | : 226 |
Release | : 2012-05-04 |
Genre | : Mathematics |
ISBN | : 0486154904 |
This text combines the logical approach of a mathematical subject with the intuitive approach of engineering and physical topics. Applications include kinematics, mechanics, and electromagnetic theory. Includes exercises and answers. 1955 edition.
Author | : Otto D. L. Strack |
Publisher | : Springer Nature |
Total Pages | : 228 |
Release | : 2020-04-18 |
Genre | : Technology & Engineering |
ISBN | : 3030411680 |
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.
Author | : Antonio Galbis |
Publisher | : Springer Science & Business Media |
Total Pages | : 383 |
Release | : 2012-03-29 |
Genre | : Mathematics |
ISBN | : 1461422000 |
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Author | : Absos Ali Shaikh |
Publisher | : Alpha Science International, Limited |
Total Pages | : 0 |
Release | : 2009 |
Genre | : Vector analysis |
ISBN | : 9781842655412 |
Vector Analysis with Applications discusses the theory of vector algebra, vector differential and integral calculus with applications to various fields such as geometry, mechanics, physics and engineering. The concept of vector analysis is explained lucidly with the geometric notions and physical motivations. Many new approaches and new problems have been incorporated to enable the readers understand the subject in a comprehensive and systematic manner. Numerous solved problems have been included in each chapter with sufficient number of exercises. Each concept is explained with geometric figures.
Author | : Charles Ernest Weatherburn |
Publisher | : |
Total Pages | : 218 |
Release | : 1921 |
Genre | : Mathematics |
ISBN | : |
Author | : Matiur Rahman |
Publisher | : WIT Press (UK) |
Total Pages | : 328 |
Release | : 2007 |
Genre | : Mathematics |
ISBN | : |
"This book is suitable for a one-semester course for senior undergraduates and junior graduate students in science and engineering. It is also suitable for the scientists and engineers working on practical problems."--BOOK JACKET.