Variational Principles for Second-order Differential Equations

Variational Principles for Second-order Differential Equations
Author: J. Grifone
Publisher: World Scientific
Total Pages: 236
Release: 2000
Genre: Mathematics
ISBN: 9789810237349

The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Variational Principles For Second-order Differential Equations, Application Of The Spencer Theory Of

Variational Principles For Second-order Differential Equations, Application Of The Spencer Theory Of
Author: Joseph Grifone
Publisher: World Scientific
Total Pages: 229
Release: 2000-05-25
Genre: Mathematics
ISBN: 9814495360

The inverse problem of the calculus of variations was first studied by Helmholtz in 1887 and it is entirely solved for the differential operators, but only a few results are known in the more general case of differential equations. This book looks at second-order differential equations and asks if they can be written as Euler-Lagrangian equations. If the equations are quadratic, the problem reduces to the characterization of the connections which are Levi-Civita for some Riemann metric.To solve the inverse problem, the authors use the formal integrability theory of overdetermined partial differential systems in the Spencer-Quillen-Goldschmidt version. The main theorems of the book furnish a complete illustration of these techniques because all possible situations appear: involutivity, 2-acyclicity, prolongation, computation of Spencer cohomology, computation of the torsion, etc.

Cohomological Analysis of Partial Differential Equations and Secondary Calculus

Cohomological Analysis of Partial Differential Equations and Secondary Calculus
Author: A. M. Vinogradov
Publisher: American Mathematical Soc.
Total Pages: 268
Release: 2001-10-16
Genre: Mathematics
ISBN: 9780821897997

This book is dedicated to fundamentals of a new theory, which is an analog of affine algebraic geometry for (nonlinear) partial differential equations. This theory grew up from the classical geometry of PDE's originated by S. Lie and his followers by incorporating some nonclassical ideas from the theory of integrable systems, the formal theory of PDE's in its modern cohomological form given by D. Spencer and H. Goldschmidt and differential calculus over commutative algebras (Primary Calculus). The main result of this synthesis is Secondary Calculus on diffieties, new geometrical objects which are analogs of algebraic varieties in the context of (nonlinear) PDE's. Secondary Calculus surprisingly reveals a deep cohomological nature of the general theory of PDE's and indicates new directions of its further progress. Recent developments in quantum field theory showed Secondary Calculus to be its natural language, promising a nonperturbative formulation of the theory. In addition to PDE's themselves, the author describes existing and potential applications of Secondary Calculus ranging from algebraic geometry to field theory, classical and quantum, including areas such as characteristic classes, differential invariants, theory of geometric structures, variational calculus, control theory, etc. This book, focused mainly on theoretical aspects, forms a natural dipole with Symmetries and Conservation Laws for Differential Equations of Mathematical Physics, Volume 182 in this same series, Translations of Mathematical Monographs, and shows the theory "in action".

The Diverse World of PDEs

The Diverse World of PDEs
Author: I. S. Krasil′shchik
Publisher: American Mathematical Society
Total Pages: 250
Release: 2023-08-21
Genre: Mathematics
ISBN: 1470471477

This volume contains the proceedings of the Alexandre Vinogradov Memorial Conference on Diffieties, Cohomological Physics, and Other Animals, held from December 13–17, 2021, at the Independent University of Moscow and Moscow State University, Moscow, Russia. The papers are devoted to various interrelations of nonlinear PDEs with geometry and integrable systems. The topics discussed are: gravitational and electromagnetic fields in General Relativity, nonlocal geometry of PDEs, Legendre foliated cocycles on contact manifolds, presymplectic gauge PDEs and Lagrangian BV formalism, jet geometry and high-order phase transitions, bi-Hamiltonian structures of KdV type, bundles of Weyl structures, Lax representations via twisted extensions of Lie algebras, energy functionals and normal forms of knots, and differential invariants of inviscid flows. The companion volume (Contemporary Mathematics, Volume 789) is devoted to Algebraic and Cohomological Aspects of PDEs.

Computer Algebra and Geometric Algebra with Applications

Computer Algebra and Geometric Algebra with Applications
Author: Hongbo Li
Publisher: Springer Science & Business Media
Total Pages: 457
Release: 2005-06-21
Genre: Computers
ISBN: 3540262962

This book constitutes the thoroughly refereed joint post-proceedings of the 6th International Workshop on Mathematics Mechanization, IWMM 2004, held in Shanghai, China in May 2004 and the International Workshop on Geometric Invariance and Applications in Engineering, GIAE 2004, held in Xian, China in May 2004. The 30 revised full papers presented were rigorously reviewed and selected from 65 presentations given at the two workshops. The papers are devoted to topics such as applications of computer algebra in celestial and engineering multibody systems, differential equations, computer vision, computer graphics, and the theory and applications of geometric algebra in geometric reasoning, robot vision, and computer graphics.

Finsler Geometry, Sapporo 2005

Finsler Geometry, Sapporo 2005
Author: Makoto Matsumoto
Publisher:
Total Pages: 456
Release: 2007
Genre: Mathematics
ISBN:

The volume contains surveys and original articles based on the talks given at the 40-th Finsler Symposium on Finsler Geometry held in the period September 9-10, 2005 at Hokkaido Tokai University, Sapporo, Japan. The Symposium's purpose was not only a meeting of the Finsler geometers from Japan and abroad, but also to commemorate the memory of the late Professor Makoto Matsumoto. The papers included in this volume contain fundamental topics of modern Riemann-Finsler geometry, interesting not only for specialists in Finsler geometry, but for researchers in Riemannian geometry or other fields of differential geometry and its applications also.Published by Mathematical Society of Japan and distributed by World Scientific Publishing Co. for all markets except North America