Variational Image Segmentation And Restoration Using Multilayer Implicit Curve Evolution Approach
Download Variational Image Segmentation And Restoration Using Multilayer Implicit Curve Evolution Approach full books in PDF, epub, and Kindle. Read online free Variational Image Segmentation And Restoration Using Multilayer Implicit Curve Evolution Approach ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Scale Space and Variational Methods in Computer Vision
Author | : Xue-Cheng Tai |
Publisher | : Springer Science & Business Media |
Total Pages | : 882 |
Release | : 2009-05-25 |
Genre | : Computers |
ISBN | : 3642022553 |
This book constitutes the refereed proceedings of the Second International Conference on Scale Space Methods and Variational Methods in Computer Vision, SSVM 2009, emanated from the joint edition of the 5th International Workshop on Variational, Geometric and Level Set Methods in Computer Vision, VLSM 2009 and the 7th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space 2009, held in Voss, Norway in June 2009. The 71 revised full papers presented were carefully reviewed and selected numerous submissions. The papers are organized in topical sections on segmentation and detection; image enhancement and reconstruction; motion analysis, optical flow, registration and tracking; surfaces and shapes; scale space and feature extraction.
Handbook of Mathematical Methods in Imaging
Author | : Otmar Scherzer |
Publisher | : Springer Science & Business Media |
Total Pages | : 1626 |
Release | : 2010-11-23 |
Genre | : Mathematics |
ISBN | : 0387929193 |
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
A Multigrid Framework for Variational Approaches in Medical Image Processing and Computer Vision
Author | : Harald Köstler |
Publisher | : |
Total Pages | : 285 |
Release | : 2008 |
Genre | : |
ISBN | : 9783899637618 |
Shape Analysis in Medical Image Analysis
Author | : Shuo Li |
Publisher | : Springer Science & Business Media |
Total Pages | : 441 |
Release | : 2014-01-28 |
Genre | : Technology & Engineering |
ISBN | : 3319038133 |
This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as for example, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computational vision, computer sciences, human motion, mathematics, medical imaging, medicine, pattern recognition and physics.
Handbook of Image and Video Processing
Author | : Alan C. Bovik |
Publisher | : Academic Press |
Total Pages | : 1429 |
Release | : 2010-07-21 |
Genre | : Technology & Engineering |
ISBN | : 0080533612 |
55% new material in the latest edition of this "must-have for students and practitioners of image & video processing!This Handbook is intended to serve as the basic reference point on image and video processing, in the field, in the research laboratory, and in the classroom. Each chapter has been written by carefully selected, distinguished experts specializing in that topic and carefully reviewed by the Editor, Al Bovik, ensuring that the greatest depth of understanding be communicated to the reader. Coverage includes introductory, intermediate and advanced topics and as such, this book serves equally well as classroom textbook as reference resource. • Provides practicing engineers and students with a highly accessible resource for learning and using image/video processing theory and algorithms • Includes a new chapter on image processing education, which should prove invaluable for those developing or modifying their curricula • Covers the various image and video processing standards that exist and are emerging, driving today's explosive industry • Offers an understanding of what images are, how they are modeled, and gives an introduction to how they are perceived • Introduces the necessary, practical background to allow engineering students to acquire and process their own digital image or video data • Culminates with a diverse set of applications chapters, covered in sufficient depth to serve as extensible models to the reader's own potential applications About the Editor... Al Bovik is the Cullen Trust for Higher Education Endowed Professor at The University of Texas at Austin, where he is the Director of the Laboratory for Image and Video Engineering (LIVE). He has published over 400 technical articles in the general area of image and video processing and holds two U.S. patents. Dr. Bovik was Distinguished Lecturer of the IEEE Signal Processing Society (2000), received the IEEE Signal Processing Society Meritorious Service Award (1998), the IEEE Third Millennium Medal (2000), and twice was a two-time Honorable Mention winner of the international Pattern Recognition Society Award. He is a Fellow of the IEEE, was Editor-in-Chief, of the IEEE Transactions on Image Processing (1996-2002), has served on and continues to serve on many other professional boards and panels, and was the Founding General Chairman of the IEEE International Conference on Image Processing which was held in Austin, Texas in 1994.* No other resource for image and video processing contains the same breadth of up-to-date coverage* Each chapter written by one or several of the top experts working in that area* Includes all essential mathematics, techniques, and algorithms for every type of image and video processing used by electrical engineers, computer scientists, internet developers, bioengineers, and scientists in various, image-intensive disciplines
Sparse Modeling for Image and Vision Processing
Author | : Julien Mairal |
Publisher | : Now Publishers |
Total Pages | : 216 |
Release | : 2014-12-19 |
Genre | : Computers |
ISBN | : 9781680830088 |
Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.
Magnetic Resonance Image Reconstruction
Author | : Mehmet Akcakaya |
Publisher | : Academic Press |
Total Pages | : 518 |
Release | : 2022-11-04 |
Genre | : Science |
ISBN | : 012822746X |
Magnetic Resonance Image Reconstruction: Theory, Methods and Applications presents the fundamental concepts of MR image reconstruction, including its formulation as an inverse problem, as well as the most common models and optimization methods for reconstructing MR images. The book discusses approaches for specific applications such as non-Cartesian imaging, under sampled reconstruction, motion correction, dynamic imaging and quantitative MRI. This unique resource is suitable for physicists, engineers, technologists and clinicians with an interest in medical image reconstruction and MRI. - Explains the underlying principles of MRI reconstruction, along with the latest research - Gives example codes for some of the methods presented - Includes updates on the latest developments, including compressed sensing, tensor-based reconstruction and machine learning based reconstruction
Information Theory, Inference and Learning Algorithms
Author | : David J. C. MacKay |
Publisher | : Cambridge University Press |
Total Pages | : 694 |
Release | : 2003-09-25 |
Genre | : Computers |
ISBN | : 9780521642989 |
Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.
Statistical Parametric Mapping: The Analysis of Functional Brain Images
Author | : William D. Penny |
Publisher | : Elsevier |
Total Pages | : 689 |
Release | : 2011-04-28 |
Genre | : Psychology |
ISBN | : 0080466508 |
In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible