Value Distribution Theory Of Holomorphic Mappings
Download Value Distribution Theory Of Holomorphic Mappings full books in PDF, epub, and Kindle. Read online free Value Distribution Theory Of Holomorphic Mappings ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Boris Vladimirovich Shabat |
Publisher | : American Mathematical Soc. |
Total Pages | : 236 |
Release | : 1985-12-31 |
Genre | : Mathematics |
ISBN | : 9780821898116 |
A vast literature has grown up around the value distribution theory of meromorphic functions, synthesized by Rolf Nevanlinna in the 1920s and singled out by Hermann Weyl as one of the greatest mathematical achievements of this century. The multidimensional aspect, involving the distribution of inverse images of analytic sets under holomorphic mappings of complex manifolds, has not been fully treated in the literature. This volume thus provides a valuable introduction to multivariate value distribution theory and a survey of some of its results, rich in relations to both algebraic and differential geometry and surely one of the most important branches of the modern geometric theory of functions of a complex variable. Since the book begins with preparatory material from the contemporary geometric theory of functions, only a familiarity with the elements of multidimensional complex analysis is necessary background to understand the topic. After proving the two main theorems of value distribution theory, the author goes on to investigate further the theory of holomorphic curves and to provide generalizations and applications of the main theorems, focusing chiefly on the work of Soviet mathematicians.
Author | : I. Laine |
Publisher | : Springer |
Total Pages | : 256 |
Release | : 2006-11-15 |
Genre | : Mathematics |
ISBN | : 354039480X |
Author | : Wilhelm Stoll |
Publisher | : Springer Science & Business Media |
Total Pages | : 358 |
Release | : 2013-06-29 |
Genre | : Science |
ISBN | : 3663052923 |
Value distribution theory studies the behavior of mermorphic maps. Let f: M - N be a merom orphic map between complex manifolds. A target family CI ~ (Ea1aEA of analytic subsets Ea of N is given where A is a connected. compact complex manifold. The behavior of the inverse 1 family ["'(CI) = (f- {E )laEA is investigated. A substantial theory has been a created by many contributors. Usually the targets Ea stay fixed. However we can consider a finite set IJ of meromorphic maps g : M - A and study the incidence f{z) E Eg(z) for z E M and some g E IJ. Here we investigate this situation: M is a parabolic manifold of dimension m and N = lP n is the n-dimensional projective space. The family of hyperplanes in lP n is the target family parameterized by the dual projective space lP* We obtain a Nevanlinna theory consisting of several n First Main Theorems. Second Main Theorems and Defect Relations and extend recent work by B. Shiffman and by S. Mori. We use the Ahlfors-Weyl theory modified by the curvature method of Cowen and Griffiths. The Introduction consists of two parts. In Part A. we sketch the theory for fixed targets to provide background for those who are familar with complex analysis but are not acquainted with value distribution theory.
Author | : Hirotaka Fujimoto |
Publisher | : Springer Science & Business Media |
Total Pages | : 222 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 332280271X |
This book presents in a systematic and almost self-contained way the striking analogy between classical function theory, in particular the value distribution theory of holomorphic curves in projective space, on the one hand, and important and beautiful properties of the Gauss map of minimal surfaces on the other hand. Both theories are developed in the text, including many results of recent research. The relations and analogies between them become completely clear. The book is written for interested graduate students and mathematicians, who want to become more familiar with this modern development in the two classical areas of mathematics, but also for those, who intend to do further research on minimal surfaces.
Author | : Grigor A. Barsegian |
Publisher | : Springer Science & Business Media |
Total Pages | : 331 |
Release | : 2006-05-02 |
Genre | : Mathematics |
ISBN | : 1402079516 |
The Nevanlinna theory of value distribution of meromorphic functions, one of the milestones of complex analysis during the last century, was c- ated to extend the classical results concerning the distribution of of entire functions to the more general setting of meromorphic functions. Later on, a similar reasoning has been applied to algebroid functions, subharmonic functions and meromorphic functions on Riemann surfaces as well as to - alytic functions of several complex variables, holomorphic and meromorphic mappings and to the theory of minimal surfaces. Moreover, several appli- tions of the theory have been exploited, including complex differential and functional equations, complex dynamics and Diophantine equations. The main emphasis of this collection is to direct attention to a number of recently developed novel ideas and generalizations that relate to the - velopment of value distribution theory and its applications. In particular, we mean a recent theory that replaces the conventional consideration of counting within a disc by an analysis of their geometric locations. Another such example is presented by the generalizations of the second main theorem to higher dimensional cases by using the jet theory. Moreover, s- ilar ideas apparently may be applied to several related areas as well, such as to partial differential equations and to differential geometry. Indeed, most of these applications go back to the problem of analyzing zeros of certain complex or real functions, meaning in fact to investigate level sets or level surfaces.
Author | : Pei-Chu Hu |
Publisher | : Springer Science & Business Media |
Total Pages | : 546 |
Release | : 2006-10-06 |
Genre | : Mathematics |
ISBN | : 3764375698 |
The subject of the book is Diophantine approximation and Nevanlinna theory. This book proves not just some new results and directions but challenging open problems in Diophantine approximation and Nevanlinna theory. The authors’ newest research activities on these subjects over the past eight years are collected here. Some of the significant findings are the proof of Green-Griffiths conjecture by using meromorphic connections and Jacobian sections, generalized abc-conjecture, and more.
Author | : Raymond O'Neil Wells |
Publisher | : American Mathematical Soc. |
Total Pages | : 342 |
Release | : 1977 |
Genre | : Mathematics |
ISBN | : 082180250X |
Contains sections on Non compact complex manifolds, Differential geometry and complex analysis, Problems in approximation, Value distribution theory, Group representation and harmonic analysis, and Survey papers.
Author | : Phillip A. Griffiths |
Publisher | : Princeton University Press |
Total Pages | : 112 |
Release | : 2016-03-02 |
Genre | : Mathematics |
ISBN | : 140088148X |
The present monograph grew out of the fifth set of Hermann Weyl Lectures, given by Professor Griffiths at the Institute for Advanced Study, Princeton, in fall 1974. In Chapter 1 the author discusses Emile Borel's proof and the classical Jensen theorem, order of growth of entire analytic sets, order functions for entire holomorphic mappings, classical indicators of orders of growth, and entire functions and varieties of finite order. Chapter 2 is devoted to the appearance of curvature, and Chapter 3 considers the defect relations. The author considers the lemma on the logarithmic derivative, R. Nevanlinna's proof of the defect relation, and refinements of the classical case.
Author | : William Cherry |
Publisher | : American Mathematical Soc. |
Total Pages | : 146 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : 0821829807 |
This volume contains six detailed papers written by participants of the special session on value distribution theory and complex dynamics held in Hong Kong at the First Joint International Meeting of the AMS and the Hong Kong Mathematical Society in December 2000. It demonstrates the strong interconnections between the two fields and introduces recent progress of leading researchers from Asia. In the book, W. Bergweiler discusses proper analytic maps with one critical point andgeneralizes a previous result concerning Leau domains. W. Cherry and J. Wang discuss non-Archimedean analogs of Picard's theorems. P.-C. Hu and C.-C. Yang give a survey of results in non-Archimedean value distribution theory related to unique range sets, the $abc$-conjecture, and Shiffman's conjecture.L. Keen and J. Kotus explore the dynamics of the family of $f \lambda(z)=\lambda\tan(z)$ and show that it has much in common with the dynamics of the familiar quadratic family $f c(z)=z2+c$. R. Oudkerk discusses the interesting phenomenon known as parabolic implosion and, in particular, shows the persistence of Fatou coordinates under perturbation. Finally, M. Taniguchi discusses deformation spaces of entire functions and their combinatorial structure of singularities of the functions. The bookis intended for graduate students and research mathematicians interested in complex dynamics, function theory, and non-Archimedean function theory.
Author | : Pierre Lelong |
Publisher | : Springer Science & Business Media |
Total Pages | : 283 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 3642703445 |
I - Entire functions of several complex variables constitute an important and original chapter in complex analysis. The study is often motivated by certain applications to specific problems in other areas of mathematics: partial differential equations via the Fourier-Laplace transformation and convolution operators, analytic number theory and problems of transcen dence, or approximation theory, just to name a few. What is important for these applications is to find solutions which satisfy certain growth conditions. The specific problem defines inherently a growth scale, and one seeks a solution of the problem which satisfies certain growth conditions on this scale, and sometimes solutions of minimal asymp totic growth or optimal solutions in some sense. For one complex variable the study of solutions with growth conditions forms the core of the classical theory of entire functions and, historically, the relationship between the number of zeros of an entire function f(z) of one complex variable and the growth of If I (or equivalently log If I) was the first example of a systematic study of growth conditions in a general setting. Problems with growth conditions on the solutions demand much more precise information than existence theorems. The correspondence between two scales of growth can be interpreted often as a correspondence between families of bounded sets in certain Frechet spaces. However, for applications it is of utmost importance to develop precise and explicit representations of the solutions.