Using Statistics To Understand The Environment
Download Using Statistics To Understand The Environment full books in PDF, epub, and Kindle. Read online free Using Statistics To Understand The Environment ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Penny A. Cook |
Publisher | : Routledge |
Total Pages | : 218 |
Release | : 2005-08-10 |
Genre | : Science |
ISBN | : 113463885X |
Using Statistics to Understand the Environment covers all the basic tests required for environmental practicals and projects and points the way to the more advanced techniques that may be needed in more complex research designs. Following an introduction to project design, the book covers methods to describe data, to examine differences between samples, and to identify relationships and associations between variables. Featuring: worked examples covering a wide range of environmental topics, drawings and icons, chapter summaries, a glossary of statistical terms and a further reading section, this book focuses on the needs of the researcher rather than on the mathematics behind the tests.
Author | : Clemens Reimann |
Publisher | : John Wiley & Sons |
Total Pages | : 380 |
Release | : 2011-08-31 |
Genre | : Science |
ISBN | : 1119965284 |
Few books on statistical data analysis in the natural sciences are written at a level that a non-statistician will easily understand. This is a book written in colloquial language, avoiding mathematical formulae as much as possible, trying to explain statistical methods using examples and graphics instead. To use the book efficiently, readers should have some computer experience. The book starts with the simplest of statistical concepts and carries readers forward to a deeper and more extensive understanding of the use of statistics in environmental sciences. The book concerns the application of statistical and other computer methods to the management, analysis and display of spatial data. These data are characterised by including locations (geographic coordinates), which leads to the necessity of using maps to display the data and the results of the statistical methods. Although the book uses examples from applied geochemistry, and a large geochemical survey in particular, the principles and ideas equally well apply to other natural sciences, e.g., environmental sciences, pedology, hydrology, geography, forestry, ecology, and health sciences/epidemiology. The book is unique because it supplies direct access to software solutions (based on R, the Open Source version of the S-language for statistics) for applied environmental statistics. For all graphics and tables presented in the book, the R-scripts are provided in the form of executable R-scripts. In addition, a graphical user interface for R, called DAS+R, was developed for convenient, fast and interactive data analysis. Statistical Data Analysis Explained: Applied Environmental Statistics with R provides, on an accompanying website, the software to undertake all the procedures discussed, and the data employed for their description in the book.
Author | : C. Philip Wheater |
Publisher | : Psychology Press |
Total Pages | : 246 |
Release | : 2000 |
Genre | : Mathematics |
ISBN | : 0415198879 |
Covering the basic tests required for environmental practicals and projects, this text points the way to the more advanced techniques that may be needed in more complex research designs. It focuses on the needs of the researcher.
Author | : Richard Harris |
Publisher | : Routledge |
Total Pages | : 280 |
Release | : 2014-05-01 |
Genre | : Science |
ISBN | : 1317904400 |
Statistics are important tools for validating theory, making predictions and engaging in policy research. They help to provide informed commentary about social and environmental issues, and to make the case for change. Knowledge of statistics is therefore a necessary skill for any student of geography or environmental science. This textbook is aimed at students on a degree course taking a module in statistics for the first time. It focuses on analysing, exploring and making sense of data in areas of core interest to physical and human geographers, and to environmental scientists. It covers the subject in a broadly conventional way from descriptive statistics, through inferential statistics to relational statistics but does so with an emphasis on applied data analysis throughout.
Author | : Abbas F. M. Al-Karkhi |
Publisher | : Elsevier |
Total Pages | : 242 |
Release | : 2019-09-13 |
Genre | : Science |
ISBN | : 0128186232 |
Applied Statistics for Environmental Science with R presents the theory and application of statistical techniques in environmental science and aids researchers in choosing the appropriate statistical technique for analyzing their data. Focusing on the use of univariate and multivariate statistical methods, this book acts as a step-by-step resource to facilitate understanding in the use of R statistical software for interpreting data in the field of environmental science. Researchers utilizing statistical analysis in environmental science and engineering will find this book to be essential in solving their day-to-day research problems. - Includes step-by-step tutorials to aid in understanding the process and implementation of unique data - Presents statistical theory in a simple way without complex mathematical proofs - Shows how to analyze data using R software and provides R scripts for all examples and figures
Author | : William Menke |
Publisher | : Elsevier |
Total Pages | : 282 |
Release | : 2011-09-02 |
Genre | : Computers |
ISBN | : 0123918863 |
"Environmental Data Analysis with MatLab" is for students and researchers working to analyze real data sets in the environmental sciences. One only has to consider the global warming debate to realize how critically important it is to be able to derive clear conclusions from often-noisy data drawn from a broad range of sources. This book teaches the basics of the underlying theory of data analysis, and then reinforces that knowledge with carefully chosen, realistic scenarios. MatLab, a commercial data processing environment, is used in these scenarios; significant content is devoted to teaching how it can be effectively used in an environmental data analysis setting. The book, though written in a self-contained way, is supplemented with data sets and MatLab scripts that can be used as a data analysis tutorial. It is well written and outlines a clear learning path for researchers and students. It uses real world environmental examples and case studies. It has MatLab software for application in a readily-available software environment. Homework problems help user follow up upon case studies with homework that expands them.
Author | : Penny A. Cook |
Publisher | : Routledge |
Total Pages | : 272 |
Release | : 2005-08-10 |
Genre | : Science |
ISBN | : 1134638868 |
Using Statistics to Understand the Environment covers all the basic tests required for environmental practicals and projects and points the way to the more advanced techniques that may be needed in more complex research designs. Following an introduction to project design, the book covers methods to describe data, to examine differences between samples, and to identify relationships and associations between variables. Featuring: worked examples covering a wide range of environmental topics, drawings and icons, chapter summaries, a glossary of statistical terms and a further reading section, this book focuses on the needs of the researcher rather than on the mathematics behind the tests.
Author | : Wayne R. Ott |
Publisher | : Routledge |
Total Pages | : 336 |
Release | : 2018-12-13 |
Genre | : Mathematics |
ISBN | : 1351450077 |
This easy-to-understand introduction emphasizes the areas of probability theory and statistics that are important in environmental monitoring, data analysis, research, environmental field surveys, and environmental decision making. It communicates basic statistical theory with very little abstract mathematical notation, but without omitting importa
Author | : Dennis R. Helsel |
Publisher | : John Wiley & Sons |
Total Pages | : 344 |
Release | : 2012-02-01 |
Genre | : Mathematics |
ISBN | : 0470479884 |
Praise for the First Edition " . . . an excellent addition to an upper-level undergraduate course on environmental statistics, and . . . a 'must-have' desk reference for environmental practitioners dealing with censored datasets." —Vadose Zone Journal Statistics for Censored Environmental Data Using Minitab® and R, Second Edition introduces and explains methods for analyzing and interpreting censored data in the environmental sciences. Adapting survival analysis techniques from other fields, the book translates well-established methods from other disciplines into new solutions for environmental studies. This new edition applies methods of survival analysis, including methods for interval-censored data to the interpretation of low-level contaminants in environmental sciences and occupational health. Now incorporating the freely available R software as well as Minitab® into the discussed analyses, the book features newly developed and updated material including: A new chapter on multivariate methods for censored data Use of interval-censored methods for treating true nondetects as lower than and separate from values between the detection and quantitation limits ("remarked data") A section on summing data with nondetects A newly written introduction that discusses invasive data, showing why substitution methods fail Expanded coverage of graphical methods for censored data The author writes in a style that focuses on applications rather than derivations, with chapters organized by key objectives such as computing intervals, comparing groups, and correlation. Examples accompany each procedure, utilizing real-world data that can be analyzed using the Minitab® and R software macros available on the book's related website, and extensive references direct readers to authoritative literature from the environmental sciences. Statistics for Censored Environmental Data Using Minitab® and R, Second Edition is an excellent book for courses on environmental statistics at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for??environmental professionals, biologists, and ecologists who focus on the water sciences, air quality, and soil science.
Author | : Matthew Russell |
Publisher | : CRC Press |
Total Pages | : 333 |
Release | : 2022-08-19 |
Genre | : Science |
ISBN | : 1000637891 |
To manage our environment sustainably, professionals must understand the quality and quantity of our natural resources. Statistical analysis provides information that supports management decisions and is universally used across scientific disciplines. Statistics in Natural Resources: Applications with R focuses on the application of statistical analyses in the environmental, agricultural, and natural resources disciplines. This is a book well suited for current or aspiring natural resource professionals who are required to analyze data and perform statistical analyses in their daily work. More seasoned professionals who have previously had a course or two in statistics will also find the content familiar. This text can also serve as a bridge between professionals who understand statistics and want to learn how to perform analyses on natural resources data in R. The primary goal of this book is to learn and apply common statistical methods used in natural resources by using the R programming language. If you dedicate considerable time to this book, you will: Develop analytical and visualization skills for investigating the behavior of agricultural and natural resources data. Become competent in importing, analyzing, and visualizing complex data sets in the R environment. Recode, combine, and restructure data sets for statistical analysis and visualization. Appreciate probability concepts as they apply to environmental problems. Understand common distributions used in statistical applications and inference. Summarize data effectively and efficiently for reporting purposes. Learn the tasks required to perform a variety of statistical hypothesis tests and interpret their results. Understand which modeling frameworks are appropriate for your data and how to interpret predictions. Includes over 130 exercises in R, with solutions available on the book’s website.