Universalities in Condensed Matter

Universalities in Condensed Matter
Author: Remi Jullien
Publisher: Springer Science & Business Media
Total Pages: 267
Release: 2012-12-06
Genre: Science
ISBN: 3642510051

Universality is the property that systems of radically different composition and structure exhibit similar behavior. The appearance of universal laws in simple critical systems is now well established experimentally, but the search for universality has not slackened. This book aims to define the current status of research in this field and to identify the most promising directions for further investigations. On the theoretical side, numerical simulations and analytical arguments have led to expectations of universal behavior in several nonequilibrium systems, e.g. aggregation, electric discharges, and viscous flows. Experimental work is being done on "geometric" phase transitions, e.g. aggregation and gelation, in real systems. The contributions to this volume allow a better understanding of chaotic systems, turbulent flows, aggregation phenomena, fractal structures, and quasicrystals. They demonstrate how the concepts of renormalization group transformations, scale invariance, and multifractality are useful for describing inhomogeneous materials and irreversible phenomena.

Condensed Matter Field Theory

Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
Total Pages: 785
Release: 2010-03-11
Genre: Science
ISBN: 0521769752

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.

Holographic Duality in Condensed Matter Physics

Holographic Duality in Condensed Matter Physics
Author: Jan Zaanen
Publisher: Cambridge University Press
Total Pages: 587
Release: 2015-11-05
Genre: Science
ISBN: 1107080088

A pioneering treatise presenting how the mathematical techniques of holographic duality can unify the fundamental theories of physics.

Introduction to Many-Body Physics

Introduction to Many-Body Physics
Author: Piers Coleman
Publisher: Cambridge University Press
Total Pages: 815
Release: 2015-11-26
Genre: Science
ISBN: 1316432025

A modern, graduate-level introduction to many-body physics in condensed matter, this textbook explains the tools and concepts needed for a research-level understanding of the correlated behavior of quantum fluids. Starting with an operator-based introduction to the quantum field theory of many-body physics, this textbook presents the Feynman diagram approach, Green's functions and finite-temperature many-body physics before developing the path integral approach to interacting systems. Special chapters are devoted to the concepts of Fermi liquid theory, broken symmetry, conduction in disordered systems, superconductivity and the physics of local-moment metals. A strong emphasis on concepts and numerous exercises make this an invaluable course book for graduate students in condensed matter physics. It will also interest students in nuclear, atomic and particle physics.

Principles of Condensed Matter Physics

Principles of Condensed Matter Physics
Author: P. M. Chaikin
Publisher: Cambridge University Press
Total Pages: 724
Release: 2000-09-28
Genre: Science
ISBN: 1139643053

Now in paperback, this book provides an overview of the physics of condensed matter systems. Assuming a familiarity with the basics of quantum mechanics and statistical mechanics, the book establishes a general framework for describing condensed phases of matter, based on symmetries and conservation laws. It explores the role of spatial dimensionality and microscopic interactions in determining the nature of phase transitions, as well as discussing the structure and properties of materials with different symmetries. Particular attention is given to critical phenomena and renormalization group methods. The properties of liquids, liquid crystals, quasicrystals, crystalline solids, magnetically ordered systems and amorphous solids are investigated in terms of their symmetry, generalised rigidity, hydrodynamics and topological defect structure. In addition to serving as a course text, this book is an essential reference for students and researchers in physics, applied physics, chemistry, materials science and engineering, who are interested in modern condensed matter physics.

35 Years Of Condensed Matter And Related Physics - Proceedings Of The Raymond L Orbach Symposium

35 Years Of Condensed Matter And Related Physics - Proceedings Of The Raymond L Orbach Symposium
Author: Daniel W Hone
Publisher: World Scientific
Total Pages: 146
Release: 1996-10-02
Genre:
ISBN: 9814547271

The 9 papers of this volume were presented at the March 1995 Symposium honoring Raymond L Orbach on his 60th birthday. The range of topics reflects the breadth of Dr Orbach's own research. It includes magnetism and transport in nanostructures, crystal fields in superconducting cuprates, fractons and scaling in disordered systems, glassy relaxation, inelastic atom-crystal scattering, bosonization in d > 1, and microwave effects in superconductors.

Universal Themes of Bose-Einstein Condensation

Universal Themes of Bose-Einstein Condensation
Author: Nick P. Proukakis
Publisher: Cambridge University Press
Total Pages: 663
Release: 2017-04-27
Genre: Science
ISBN: 1107085691

Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.

String Theory Methods for Condensed Matter Physics

String Theory Methods for Condensed Matter Physics
Author: Horatiu Nastase
Publisher: Cambridge University Press
Total Pages: 631
Release: 2017-09-21
Genre: Science
ISBN: 1316851648

The discovery of a duality between Anti-de Sitter spaces (AdS) and Conformal Field Theories (CFT) has led to major advances in our understanding of quantum field theory and quantum gravity. String theory methods and AdS/CFT correspondence maps provide new ways to think about difficult condensed matter problems. String theory methods based on the AdS/CFT correspondence allow us to transform problems so they have weak interactions and can be solved more easily. They can also help map problems to different descriptions, for instance mapping the description of a fluid using the Navier–Stokes equations to the description of an event horizon of a black hole using Einstein's equations. This textbook covers the applications of string theory methods and the mathematics of AdS/CFT to areas of condensed matter physics. Bridging the gap between string theory and condensed matter, this is a valuable textbook for students and researchers in both fields.