Universal Features for High-Dimensional Learning and Inference

Universal Features for High-Dimensional Learning and Inference
Author: Shao-Lun Huang
Publisher: Now Publishers
Total Pages: 0
Release: 2024-02-05
Genre: Computers
ISBN: 9781638281764

In many contemporary and emerging applications of machine learning and statistical inference, the phenomena of interest are characterized by variables defined over large alphabets. This increasing size of both the data and the number of inferences, and the limited available training data means there is a need to understand which inference tasks can be most effectively carried out, and, in turn, what features of the data are most relevant to them. In this monograph, the authors develop the idea of extracting "universally good" features, and establish that diverse notions of such universality lead to precisely the same features. The information-theoretic approach used results in a local information geometric analysis that facilitates their computation in a host of applications. The authors provide a comprehensive treatment that guides the reader through the basic principles to the advanced techniques including many new results. They emphasize a development from first-principles together with common, unifying terminology and notation, and pointers to the rich embodying literature, both historical and contemporary. Written for students and researchers, this monograph is a complete treatise on the information theoretic treatment of a recognized and current problem in machine learning and statistical inference.

Information Theory for Data Communications and Processing

Information Theory for Data Communications and Processing
Author: Shlomo Shamai (Shitz)
Publisher: MDPI
Total Pages: 294
Release: 2021-01-13
Genre: Technology & Engineering
ISBN: 3039438174

Modern, current, and future communications/processing aspects motivate basic information-theoretic research for a wide variety of systems for which we do not have the ultimate theoretical solutions (for example, a variety of problems in network information theory as the broadcast/interference and relay channels, which mostly remain unsolved in terms of determining capacity regions and the like). Technologies such as 5/6G cellular communications, Internet of Things (IoT), and mobile edge networks, among others, not only require reliable rates of information measured by the relevant capacity and capacity regions, but are also subject to issues such as latency vs. reliability, availability of system state information, priority of information, secrecy demands, energy consumption per mobile equipment, sharing of communications resources (time/frequency/space), etc. This book, composed of a collection of papers that have appeared in the Special Issue of the Entropy journal dedicated to “Information Theory for Data Communications and Processing”, reflects, in its eleven chapters, novel contributions based on the firm basic grounds of information theory. The book chapters address timely theoretical and practical aspects that constitute both interesting and relevant theoretical contributions, as well as direct implications for modern current and future communications systems.

Computer Vision – ECCV 2022

Computer Vision – ECCV 2022
Author: Shai Avidan
Publisher: Springer Nature
Total Pages: 818
Release: 2022-10-21
Genre: Computers
ISBN: 3031198301

The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms
Author: David J. C. MacKay
Publisher: Cambridge University Press
Total Pages: 694
Release: 2003-09-25
Genre: Computers
ISBN: 9780521642989

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

Machine Learning for Multimodal Healthcare Data

Machine Learning for Multimodal Healthcare Data
Author: Andreas K. Maier
Publisher: Springer Nature
Total Pages: 200
Release: 2023-11-25
Genre: Medical
ISBN: 3031476794

This book constitutes the proceedings of the First International Workshop on Machine Learning for Multimodal Healthcare Date, ML4MHD 2023, held in Honolulu, Hawaii, USA, in July 2023. The 18 full papers presented were carefully reviewed and selected from 30 submissions. The workshop's primary objective was to bring together experts from diverse fields such as medicine, pathology, biology, and machine learning. With the aim to present novel methods and solutions that address healthcare challenges, especially those that arise from the complexity and heterogeneity of patient data.

Understanding Machine Learning

Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
Total Pages: 415
Release: 2014-05-19
Genre: Computers
ISBN: 1107057132

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Introduction to High-Dimensional Statistics

Introduction to High-Dimensional Statistics
Author: Christophe Giraud
Publisher: CRC Press
Total Pages: 410
Release: 2021-08-25
Genre: Computers
ISBN: 1000408353

Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.

Graph Representation Learning

Graph Representation Learning
Author: William L. William L. Hamilton
Publisher: Springer Nature
Total Pages: 141
Release: 2022-06-01
Genre: Computers
ISBN: 3031015886

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.