Underwater Sound Propagation and Acoustic Communication in a Time-varying Shallow Estuarine Environment

Underwater Sound Propagation and Acoustic Communication in a Time-varying Shallow Estuarine Environment
Author: Zheguang Zou
Publisher:
Total Pages: 132
Release: 2018
Genre:
ISBN: 9780355734898

Estuaries are water regions that connect rivers and oceans, which are very important due to heavy traffic, fishery and other coastal engineering activities. Underwater acoustic technology offers a series of effective applications and technical supports for real-time monitoring and long-term preservation of the nature environment and ecosystem in these regions. However, estuaries are shallow waters with complicated temporal and spatial environmental variability, involving a variety of physical oceanographic processes, such as tidal water mixing and ocean winds/waves, which can significantly influence the underwater sound propagation and moreover, underwater acoustic communications. In order to perform reliably and effectively in such complex time-varying shallow-water ocean environments, next-generation underwater acoustic communication systems need an all new design based on the environmental variability of the physical ocean, which takes the environmental physics and time-varying variability into account and is able to adapt and switch to the optimal mode as the environment evolves. Therefore, a deep, comprehensive and thorough understanding of the link between the time-varying ocean environment, underwater acoustic channel, and underwater acoustic communication systems is highly required. ☐ This dissertation investigated the relationship between the shallow-water, time-varying environment of estuaries, the underwater sound propagation and underwater acoustic communications, which can help the design of underwater acoustic systems so that they can adapt the time-varying environment with wiser parameter configurations. In this dissertation, field data analysis, joint numerical modeling, together with a controllable laboratory experiment were used to study acoustic channel variability of a shallow estuary and its influence on the performance of underwater acoustic communications. This dissertation included four aspects: (a) Effect of water-column variation due to the tidal dynamics in an estuary on the underwater acoustic direct path; (b) Effect of time-varying surface roughness due to the wind-driven waves on underwater acoustic surface paths; (c) Numerically modeling the effect of time-varying wind-driven shallow-water waves on coherent underwater acoustic communications using a combined model; (d) Conducting a controllable laboratory experiment to investigate the time-varying wind-driven water waves on the performance of coherent and non-coherent underwater acoustic communications. ☐ The first two aspects focused on the link between the time-varying environment of an estuary and the underwater acoustic wave propagation. With field data analysis and joint numerical modeling, the time-varying variability of acoustic direct paths and surface-bounced paths from a high-frequency acoustic experiment conducted in the Delaware Bay estuary was explored. On one hand, periodical acoustic direct path fading was found in the tidal-straining Delaware Bay estuary, with the fading period as same as the semi-diurnal tide. Based on physical oceanography and ocean acoustics, the mechanism that causes the direct path fading and its link to the water dynamics of an estuary was investigated. On the other hand, the relationship between the acoustic surface paths and the surface wind speed was investigated, and the wind-influenced shallow-water time-varying channel was studied using field data analysis and a joint model combining physical oceanography and ocean acoustics. The joint numerical model, including a wind-wave model, a surface generation algorithm and a parabolic equation acoustic model, reproduced the relationship between the wind speed and surface reflection signals. ☐ The last two aspects applied the knowledge of underwater sound propagation in shallow estuaries into analyzing the performance of underwater acoustic communication systems, i.e., investigating how the fast fluctuation of a shallow-water environment (wind-driven waves) influences different fundamental modulation schemes for underwater acoustic communications. To better analyze the effect of environmental variability of the physical ocean on underwater acoustic communications, the surface condition was set as the only variation in the numerical modeling and the controllable laboratory experiment. On one hand, a combined model including physical oceanography, ocean acoustics, and underwater acoustic communication was used to study the time-varying underwater acoustic channel under different wind speeds, and the performance of the coherent acoustic communication (QPSK) system. On the other hand, a controllable laboratory experiment was conducted to investigate bit-error-rate (BER) performance of the MFSK (representing the non-coherent acoustic communication) and the QPSK (representing the coherent acoustic communication) acoustic modulations. ☐ The main conclusions of the dissertation are as follows. For the time-varying variability of underwater acoustic channel: (a) Due to the tidal-straining water dynamics of an estuary, periodical water column exchange between the seawater and the freshwater, up-refracting sound speed profile is more likely to form by the end of ebb tide, which redirects sound signal away from the deep receivers and creates shadow zone for the sound direct path; (b) In an open estuary, the acoustic pressure of surface-bounced paths decreases with increased wind speed, as a result of increased acoustic scattering due to the wind-driven surface roughness. For underwater acoustic communications: (c) Coherent acoustic communications are sensitive to the fast time-varying variability, and performance decrease significantly with increased wind speed, as a result of increased channel variability and decreased temporal coherence; (d) Non-coherent acoustic communications are less sensitive to the channel variability, and the reduced multipath signals due to wind-wave surface may improve the system performance. ☐ The key novelties of this dissertation include: (a) Using a joint model involving physical oceanography and ocean acoustics to study the effect of time-varying estuarine environment (water-column variations and wind-driven surface waves) on underwater sound propagation and the underwater acoustic channels. (b) Using an integrated model involving physical oceanography, ocean acoustics, and underwater acoustic communications to study the effect of time-varying estuarine environment (wind-driven surface waves) on underwater acoustic communications. (c) Using field experimental data, numerical modeling and controllable laboratory experiment to study the underwater sound propagation and underwater acoustic communications in a time-varying ocean environment.

Digital Underwater Acoustic Communications

Digital Underwater Acoustic Communications
Author: Lufen Xu
Publisher: Academic Press
Total Pages: 292
Release: 2016-09-16
Genre: Technology & Engineering
ISBN: 0128030291

Digital Underwater Acoustic Communications focuses on describing the differences between underwater acoustic communication channels and radio channels, discusses loss of transmitted sound in underwater acoustic channels, describes digital underwater acoustic communication signal processing, and provides a comprehensive reference to digital underwater acoustic communication equipment. This book is designed to serve as a reference for postgraduate students and practicing engineers involved in the design and analysis of underwater acoustic communications systems as well as for engineers involved in underwater acoustic engineering. - Introduces the basics of underwater acoustics, along with the advanced functionalities needed to achieve reliable communications in underwater environment - Identifies challenges in underwater acoustic channels relative to radio channels, underwater acoustic propagation, and solutions - Shows how multi-path structures can be thought of as time diversity signals - Presents a new, robust signal processing system, and an advanced FH-SS system for multimedia underwater acoustic communications with moderate communication ranges (above 20km) and rates (above 600bps) - Describes the APNFM system for underwater acoustic communication equipment (including both civil and military applications), to be employed in active sonar to improve its performance

Underwater Acoustics and Ocean Dynamics

Underwater Acoustics and Ocean Dynamics
Author: Lisheng Zhou
Publisher: Springer
Total Pages: 126
Release: 2016-10-17
Genre: Science
ISBN: 9811024227

These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

The Use of M-Sequences to Optimize Underwater Acoustic Communications in Shallow Waters

The Use of M-Sequences to Optimize Underwater Acoustic Communications in Shallow Waters
Author: Fabio B. Louza
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

The relationship between dynamic ocean acoustic fluctuations and the underwater communication in shallow waters acoustic propagation channels will be investigated, as they present a challenging environment for the transmission of information, causing inter-symbol interference (ISI) and multipath signal spreading and fading. The study and simulations will be based on data from an upwelling monitoring buoy located in the shallow waters of Arraial do Cabo -- Brazil. The focus of this thesis is to perform a systematic analysis of the role of the internal waves and upwelling on phase stability of a signal propagating through the channel, in terms of temporal coherence, using the Monterey-Miami parabolic equation (MMPE) model, and compare two approaches to optimize communication systems: prediction and/or measurement of the channel pulse responses. The first one is based on previous predicted pulse responses, given by MMPE and a matched or inverse filter to retrieve the message through multipath recombination. However, as filtering results begin to erode with time, one can estimate the refresh time of the filters necessary to keep up with real time varying sound speed profiles in these shallow waters. The second approach uses a simultaneous background experiment to directly measure and update the channel pulse response while collecting the message, based on "training pulse response measurements", classic low intensity M-sequences. Finally, the process called Hyperslice Cancellation by Coordinate Zeroing (HCCO) (Chang, 1992) will be performed to eliminate interferences between the M-sequences and the original messages.

An Introduction to Underwater Acoustics

An Introduction to Underwater Acoustics
Author: Xavier Lurton
Publisher: Springer Science & Business Media
Total Pages: 386
Release: 2002
Genre: Science
ISBN: 9783540429678

Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. It covers the general features of sonar systems, transducers and arrays, signal processing and performance evaluation. It provides an overview of today's applications, presenting the working principles of the various systems. From the reviews: "Presented in a clear and concise way as an introductory text and practical handbook, the book provides the basic physical phenomena governing underwater acoustical waves, propagation, reflection, target backscattering and noise. ⦠It provides an overview of todayâs applications, presenting the working principles of the various systems." (Oceanis, Vol. 27 (3-4), 2003) "This book is a general survey of Underwater Acoustics, intended to make the subject âas easily accessible as possible, with a clear emphasis on applications.â In this the author has succeeded, with a wide variety of subjects presented with minimal derivation ⦠. There is an emphasis on technology and on intuitive physical explanation ⦠." (Darrell R. Jackson, Journal of the Acoustic Society of America, Vol. 115 (2), February, 2004) "This is an exciting new scientific publication. It is timely and welcome ⦠. Furthermore, it is up to date and readable. It is well researched, excellently published and ranks with earlier books in this discipline ⦠. Many persons in the marine science field including acousticians, hydrographers, oceanographers, fisheries scientists, engineers, educators, students ⦠and equipment manufacturers will benefit greatly by reading all or part of this text. The author is to be congratulated on his fine contribution ⦠." (Stephen B. MacPhee, International Hydrographic Review, Vol. 4 (2), 2003)

Online Learning of the Spatial-Temporal Channel Variation in Underwater Acoustic Communication Networks

Online Learning of the Spatial-Temporal Channel Variation in Underwater Acoustic Communication Networks
Author:
Publisher:
Total Pages:
Release: 2019
Genre:
ISBN:

Abstract : Influenced by environmental conditions, underwater acoustic (UWA) communication channels exhibit spatial and temporal variations, posing significant challenges for UWA networking and applications. This dissertation develops statistical signal processing approaches to model and predict variations of the channel and relevant environmental factors. Firstly, extensive field experiments are conducted in the Great Lakes region. Three types of the freshwater river/lake acoustic channels are characterized in the aspects of statistical channel variations and sound propagation loss, including stationary, mobile and under-ice acoustic channels. Statistical data analysis shows that relative to oceanic channels, freshwater river/lake channels have larger temporal coherence, higher correlation among densely distributed channel paths, and less sound absorption loss. Moreover, variations of the under-ice channels are less severe than those in open water in terms of multipath structure and Doppler effect. Based on the observed channel characteristics, insights on acoustic transceiver design are provided, and the following two works are developed. online modeling and prediction of slowly-varying channel parameters are investigated, by exploiting their inherent temporal correlation and correlation with water environment. The temporal evolution of the channel statistics is modeled as the summation of a time-varying environmental process, and a Markov latent process representing unknown or unmeasurable physical mechanisms. An algorithm is developed to recursively estimate the unknown model parameters and predict the channel parameter of interest. The above model and the recursive algorithm are further extended to the channel that exhibits periodic dynamics. The proposed models and algorithms are evaluated via extensive simulations and data sets from two shallow-water experiments. The experimental results reveal that the average channel-gain-to-noise-power ratio, the fast fading statistics, and the average delay spread can be well predicted. The inhomogeneity of the sound speed distribution is challenging for Autonomous underwater vehicles (AUVs) communications and acoustic signaling-based AUV localization due to the refraction effect. Based on the time-of-flight (TOF) measurements among the AUVs, a distributed and cooperative algorithm is developed for joint sound speed estimation and AUV tracking. The joint probability distribution of the time-of-flight (TOF) measurements, the sound speed parameters and the AUV locations are represented by a factor graph, based on which a Gaussian message passing algorithm is proposed after the linearization of nonlinear measurement models. Simulation results show that the AUV locations and the sound speed parameters can be tracked with satisfying accuracy. Moreover, significant localization improvement can be achieved when the sound speed stratification effect is taken into consideration.

Sound Propagation through the Stochastic Ocean

Sound Propagation through the Stochastic Ocean
Author: John A. Colosi
Publisher: Cambridge University Press
Total Pages: 443
Release: 2016-06-20
Genre: Science
ISBN: 1316684032

The ocean is opaque to electromagnetic radiation and transparent to low frequency sound, so acoustical methodologies are an important tool for sensing the undersea world. Stochastic sound-speed fluctuations in the ocean, such as those caused by internal waves, result in a progressive randomisation of acoustic signals as they traverse the ocean environment. This signal randomisation imposes a limit to the effectiveness of ocean acoustic remote sensing, navigation and communication. Sound Propagation through the Stochastic Ocean provides a comprehensive treatment of developments in the field of statistical ocean acoustics over the last 35 years. This will be of fundamental interest to oceanographers, marine biologists, geophysicists, engineers, applied mathematicians, and physicists. Key discoveries in topics such as internal waves, ray chaos, Feynman path integrals, and mode transport theory are addressed with illustrations from ocean observations. The topics are presented at an approachable level for advanced students and seasoned researchers alike.

Experimental Studies of Applications of Time-Reversal Acoustics to Non- Coherent Underwater Communications

Experimental Studies of Applications of Time-Reversal Acoustics to Non- Coherent Underwater Communications
Author: Michael G. Heinemann
Publisher:
Total Pages: 72
Release: 2000-03
Genre:
ISBN: 9781423552321

The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. Computationally intensive and complex signal processing algorithms are required to compensate for symbol overlapping. This thesis presents results of a tank scale experiment to test Time-Reversal Acoustics (TRA) approach for high data rate binary transmissions. TRA can environmentally adapt the acoustic propagation effects of a complex medium. Our results show the suitability of the TRA approach in underwater acoustic communications. The results also show good focusing properties at an intended target location. The focal region extends over a few wavelengths, outside of which scrambling of the message occurs, offering natural encryption. Range shifts of the focal region could be achieved by frequency shifting. We found that the time focusing is aperture-size independent, but the spatial focusing is aperture-size dependent. Overall, we showed that our algorithm can accomplish a fast, secure, and stable communication scheme with low computational complexity.