Uncertainty Quantification for Hyperbolic and Kinetic Equations

Uncertainty Quantification for Hyperbolic and Kinetic Equations
Author: Shi Jin
Publisher: Springer
Total Pages: 282
Release: 2018-03-20
Genre: Mathematics
ISBN: 3319671103

This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems

Advances in Numerical Methods for Hyperbolic Balance Laws and Related Problems
Author: Giacomo Albi
Publisher: Springer Nature
Total Pages: 241
Release: 2023-06-02
Genre: Mathematics
ISBN: 3031298756

A broad range of phenomena in science and technology can be described by non-linear partial differential equations characterized by systems of conservation laws with source terms. Well known examples are hyperbolic systems with source terms, kinetic equations, and convection-reaction-diffusion equations. This book collects research advances in numerical methods for hyperbolic balance laws and kinetic equations together with related modelling aspects. All the contributions are based on the talks of the speakers of the Young Researchers’ Conference “Numerical Aspects of Hyperbolic Balance Laws and Related Problems”, hosted at the University of Verona, Italy, in December 2021.

Trails in Kinetic Theory

Trails in Kinetic Theory
Author: Giacomo Albi
Publisher: Springer Nature
Total Pages: 251
Release: 2021-07-15
Genre: Science
ISBN: 3030671046

In recent decades, kinetic theory - originally developed as a field of mathematical physics - has emerged as one of the most prominent fields of modern mathematics. In recent years, there has been an explosion of applications of kinetic theory to other areas of research, such as biology and social sciences. This book collects lecture notes and recent advances in the field of kinetic theory of lecturers and speakers of the School “Trails in Kinetic Theory: Foundational Aspects and Numerical Methods”, hosted at Hausdorff Institute for Mathematics (HIM) of Bonn, Germany, 2019, during the Junior Trimester Program “Kinetic Theory”. Focusing on fundamental questions in both theoretical and numerical aspects, it also presents a broad view of related problems in socioeconomic sciences, pedestrian dynamics and traffic flow management.

Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems
Author: Remi Abgrall
Publisher: Elsevier
Total Pages: 612
Release: 2017-01-16
Genre: Mathematics
ISBN: 044463911X

Handbook on Numerical Methods for Hyperbolic Problems: Applied and Modern Issues details the large amount of literature in the design, analysis, and application of various numerical algorithms for solving hyperbolic equations that has been produced in the last several decades. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and become familiar with their relative advantages and limitations. - Provides detailed, cutting-edge background explanations of existing algorithms and their analysis - Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or those involved in applications - Written by leading subject experts in each field, the volumes provide breadth and depth of content coverage

Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models

Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models
Author: Gabriella Puppo
Publisher: Springer Nature
Total Pages: 102
Release: 2021-03-31
Genre: Mathematics
ISBN: 3030665607

The book originates from the mini-symposium "Mathematical descriptions of traffic flow: micro, macro and kinetic models" organised by the editors within the ICIAM 2019 Congress held in Valencia, Spain, in July 2019. The book is composed of five chapters, which address new research lines in the mathematical modelling of vehicular traffic, at the cutting edge of contemporary research, including traffic automation by means of autonomous vehicles. The contributions span the three most representative scales of mathematical modelling: the microscopic scale of particles, the mesoscopic scale of statistical kinetic description and the macroscopic scale of partial differential equations.The work is addressed to researchers in the field.

Uncertainty Quantification in Computational Fluid Dynamics

Uncertainty Quantification in Computational Fluid Dynamics
Author: Hester Bijl
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2013-09-20
Genre: Mathematics
ISBN: 3319008854

Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.

Uncertainty Quantification in Variational Inequalities

Uncertainty Quantification in Variational Inequalities
Author: Joachim Gwinner
Publisher: CRC Press
Total Pages: 405
Release: 2021-12-24
Genre: Mathematics
ISBN: 1351857673

Uncertainty Quantification (UQ) is an emerging and extremely active research discipline which aims to quantitatively treat any uncertainty in applied models. The primary objective of Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications is to present a comprehensive treatment of UQ in variational inequalities and some of its generalizations emerging from various network, economic, and engineering models. Some of the developed techniques also apply to machine learning, neural networks, and related fields. Features First book on UQ in variational inequalities emerging from various network, economic, and engineering models Completely self-contained and lucid in style Aimed for a diverse audience including applied mathematicians, engineers, economists, and professionals from academia Includes the most recent developments on the subject which so far have only been available in the research literature

Numerical Approximation of Hyperbolic Systems of Conservation Laws

Numerical Approximation of Hyperbolic Systems of Conservation Laws
Author: Edwige Godlewski
Publisher: Springer Nature
Total Pages: 846
Release: 2021-08-28
Genre: Mathematics
ISBN: 1071613448

This monograph is devoted to the theory and approximation by finite volume methods of nonlinear hyperbolic systems of conservation laws in one or two space variables. It follows directly a previous publication on hyperbolic systems of conservation laws by the same authors. Since the earlier work concentrated on the mathematical theory of multidimensional scalar conservation laws, this book will focus on systems and the theoretical aspects which are needed in the applications, such as the solution of the Riemann problem and further insights into more sophisticated problems, with special attention to the system of gas dynamics. This new edition includes more examples such as MHD and shallow water, with an insight on multiphase flows. Additionally, the text includes source terms and well-balanced/asymptotic preserving schemes, introducing relaxation schemes and addressing problems related to resonance and discontinuous fluxes while adding details on the low Mach number situation.

Recent Advances in Numerical Methods for Hyperbolic PDE Systems

Recent Advances in Numerical Methods for Hyperbolic PDE Systems
Author: María Luz Muñoz-Ruiz
Publisher: Springer Nature
Total Pages: 269
Release: 2021-05-25
Genre: Mathematics
ISBN: 3030728501

The present volume contains selected papers issued from the sixth edition of the International Conference "Numerical methods for hyperbolic problems" that took place in 2019 in Málaga (Spain). NumHyp conferences, which began in 2009, focus on recent developments and new directions in the field of numerical methods for hyperbolic partial differential equations (PDEs) and their applications. The 11 chapters of the book cover several state-of-the-art numerical techniques and applications, including the design of numerical methods with good properties (well-balanced, asymptotic-preserving, high-order accurate, domain invariant preserving, uncertainty quantification, etc.), applications to models issued from different fields (Euler equations of gas dynamics, Navier-Stokes equations, multilayer shallow-water systems, ideal magnetohydrodynamics or fluid models to simulate multiphase flow, sediment transport, turbulent deflagrations, etc.), and the development of new nonlinear dispersive shallow-water models. The volume is addressed to PhD students and researchers in Applied Mathematics, Fluid Mechanics, or Engineering whose investigation focuses on or uses numerical methods for hyperbolic systems. It may also be a useful tool for practitioners who look for state-of-the-art methods for flow simulation.

Predicting Pandemics in a Globally Connected World, Volume 1

Predicting Pandemics in a Globally Connected World, Volume 1
Author: Nicola Bellomo
Publisher: Springer Nature
Total Pages: 314
Release: 2022-09-22
Genre: Mathematics
ISBN: 3030965627

This contributed volume investigates several mathematical techniques for the modeling and simulation of viral pandemics, with a special focus on COVID-19. Modeling a pandemic requires an interdisciplinary approach with other fields such as epidemiology, virology, immunology, and biology in general. Spatial dynamics and interactions are also important features to be considered, and a multiscale framework is needed at the level of individuals and the level of virus particles and the immune system. Chapters in this volume address these items, as well as offer perspectives for the future.