Separable Programming

Separable Programming
Author: S.M. Stefanov
Publisher: Springer Science & Business Media
Total Pages: 323
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475734174

In this book, the author considers separable programming and, in particular, one of its important cases - convex separable programming. Some general results are presented, techniques of approximating the separable problem by linear programming and dynamic programming are considered. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. Numerical approximation with respect to I1 and I4 norms, as a convex separable nonsmooth unconstrained minimization problem, is considered as well. Audience: Advanced undergraduate and graduate students, mathematical programming/ operations research specialists.

Separable Optimization

Separable Optimization
Author: Stefan M. Stefanov
Publisher: Springer Nature
Total Pages: 360
Release: 2022-01-01
Genre: Mathematics
ISBN: 3030784010

In this book, the theory, methods and applications of separable optimization are considered. Some general results are presented, techniques of approximating the separable problem by linear programming problem, and dynamic programming are also studied. Convex separable programs subject to inequality/ equality constraint(s) and bounds on variables are also studied and convergent iterative algorithms of polynomial complexity are proposed. As an application, these algorithms are used in the implementation of stochastic quasigradient methods to some separable stochastic programs. The problems of numerical approximation of tabulated functions and numerical solution of overdetermined systems of linear algebraic equations and some systems of nonlinear equations are solved by separable convex unconstrained minimization problems. Some properties of the Knapsack polytope are also studied. This second edition includes a substantial amount of new and revised content. Three new chapters, 15-17, are included. Chapters 15-16 are devoted to the further analysis of the Knapsack problem. Chapter 17 is focused on the analysis of a nonlinear transportation problem. Three new Appendices (E-G) are also added to this edition and present technical details that help round out the coverage. Optimization problems and methods for solving the problems considered are interesting not only from the viewpoint of optimization theory, optimization methods and their applications, but also from the viewpoint of other fields of science, especially the artificial intelligence and machine learning fields within computer science. This book is intended for the researcher, practitioner, or engineer who is interested in the detailed treatment of separable programming and wants to take advantage of the latest theoretical and algorithmic results. It may also be used as a textbook for a special topics course or as a supplementary textbook for graduate courses on nonlinear and convex optimization.

Nonlinear Programming

Nonlinear Programming
Author: Mokhtar S. Bazaraa
Publisher: John Wiley & Sons
Total Pages: 818
Release: 2013-06-12
Genre: Mathematics
ISBN: 1118626303

COMPREHENSIVE COVERAGE OF NONLINEAR PROGRAMMING THEORY AND ALGORITHMS, THOROUGHLY REVISED AND EXPANDED Nonlinear Programming: Theory and Algorithms—now in an extensively updated Third Edition—addresses the problem of optimizing an objective function in the presence of equality and inequality constraints. Many realistic problems cannot be adequately represented as a linear program owing to the nature of the nonlinearity of the objective function and/or the nonlinearity of any constraints. The Third Edition begins with a general introduction to nonlinear programming with illustrative examples and guidelines for model construction. Concentration on the three major parts of nonlinear programming is provided: Convex analysis with discussion of topological properties of convex sets, separation and support of convex sets, polyhedral sets, extreme points and extreme directions of polyhedral sets, and linear programming Optimality conditions and duality with coverage of the nature, interpretation, and value of the classical Fritz John (FJ) and the Karush-Kuhn-Tucker (KKT) optimality conditions; the interrelationships between various proposed constraint qualifications; and Lagrangian duality and saddle point optimality conditions Algorithms and their convergence, with a presentation of algorithms for solving both unconstrained and constrained nonlinear programming problems Important features of the Third Edition include: New topics such as second interior point methods, nonconvex optimization, nondifferentiable optimization, and more Updated discussion and new applications in each chapter Detailed numerical examples and graphical illustrations Essential coverage of modeling and formulating nonlinear programs Simple numerical problems Advanced theoretical exercises The book is a solid reference for professionals as well as a useful text for students in the fields of operations research, management science, industrial engineering, applied mathematics, and also in engineering disciplines that deal with analytical optimization techniques. The logical and self-contained format uniquely covers nonlinear programming techniques with a great depth of information and an abundance of valuable examples and illustrations that showcase the most current advances in nonlinear problems.

Nonlinear Programming

Nonlinear Programming
Author: Dimitri Bertsekas
Publisher: Athena Scientific
Total Pages: 1100
Release: 2016-09-01
Genre: Mathematics
ISBN: 1886529051

This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The 3rd edition brings the book in closer harmony with the companion works Convex Optimization Theory (Athena Scientific, 2009), Convex Optimization Algorithms (Athena Scientific, 2015), Convex Analysis and Optimization (Athena Scientific, 2003), and Network Optimization (Athena Scientific, 1998). These works are complementary in that they deal primarily with convex, possibly nondifferentiable, optimization problems and rely on convex analysis. By contrast the nonlinear programming book focuses primarily on analytical and computational methods for possibly nonconvex differentiable problems. It relies primarily on calculus and variational analysis, yet it still contains a detailed presentation of duality theory and its uses for both convex and nonconvex problems. This on-line edition contains detailed solutions to all the theoretical book exercises. Among its special features, the book: Provides extensive coverage of iterative optimization methods within a unifying framework Covers in depth duality theory from both a variational and a geometric point of view Provides a detailed treatment of interior point methods for linear programming Includes much new material on a number of topics, such as proximal algorithms, alternating direction methods of multipliers, and conic programming Focuses on large-scale optimization topics of much current interest, such as first order methods, incremental methods, and distributed asynchronous computation, and their applications in machine learning, signal processing, neural network training, and big data applications Includes a large number of examples and exercises Was developed through extensive classroom use in first-year graduate courses

Computational Mathematical Programming

Computational Mathematical Programming
Author: Klaus Schittkowski
Publisher: Springer Science & Business Media
Total Pages: 455
Release: 2013-06-29
Genre: Mathematics
ISBN: 3642824501

This book contains the written versions of main lectures presented at the Advanced Study Institute (ASI) on Computational Mathematical Programming, which was held in Bad Windsheim, Germany F. R., from July 23 to August 2, 1984, under the sponsorship of NATO. The ASI was organized by the Committee on Algorithms (COAL) of the Mathematical Programming Society. Co-directors were Karla Hoffmann (National Bureau of Standards, Washington, U.S.A.) and Jan Teigen (Rabobank Nederland, Zeist, The Netherlands). Ninety participants coming from about 20 different countries attended the ASI and contributed their efforts to achieve a highly interesting and stimulating meeting. Since 1947 when the first linear programming technique was developed, the importance of optimization models and their mathematical solution methods has steadily increased, and now plays a leading role in applied research areas. The basic idea of optimization theory is to minimize (or maximize) a function of several variables subject to certain restrictions. This general mathematical concept covers a broad class of possible practical applications arising in mechanical, electrical, or chemical engineering, physics, economics, medicine, biology, etc. There are both industrial applications (e.g. design of mechanical structures, production plans) and applications in the natural, engineering, and social sciences (e.g. chemical equilibrium problems, christollography problems).

Network Flows and Monotropic Optimization

Network Flows and Monotropic Optimization
Author: R. Tyrell Rockafellar
Publisher: Athena Scientific
Total Pages: 632
Release: 1999-06-01
Genre: Mathematics
ISBN: 188652906X

A rigorous and comprehensive treatment of network flow theory and monotropic optimization by one of the world's most renowned applied mathematicians. This classic textbook covers extensively the duality theory and the algorithms of linear and nonlinear network optimization optimization, and their significant extensions to monotropic programming (separable convex constrained optimization problems, including linear programs). It complements our other book on the subject of network optimization Network Optimization: Continuous and Discrete Models (Athena Scientific, 1998). Monotropic programming problems are characterized by a rich interplay between combinatorial structure and convexity properties. Rockafellar develops, for the first time, algorithms and a remarkably complete duality theory for these problems. Among its special features the book: (a) Treats in-depth the duality theory for linear and nonlinear network optimization (b) Uses a rigorous step-by-step approach to develop the principal network optimization algorithms (c) Covers the main algorithms for specialized network problems, such as max-flow, feasibility, assignment, and shortest path (d) Develops in detail the theory of monotropic programming, based on the author's highly acclaimed research (e) Contains many examples, illustrations, and exercises (f) Contains much new material not found in any other textbook