Two Dimensional Transforms
Download Two Dimensional Transforms full books in PDF, epub, and Kindle. Read online free Two Dimensional Transforms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Paul R. Wolf |
Publisher | : McGraw Hill Professional |
Total Pages | : 691 |
Release | : 2013-10-22 |
Genre | : Technology & Engineering |
ISBN | : 007176111X |
The definitive guide to photogrammetry--fully updated Thoroughly revised to cover the latest technological advances in the field, Elements of Photogrammetry with Applications in GIS, Fourth Edition, provides complete details on the foundational principles of photogrammetry as well as important advanced concepts. Significant changes in the instruments and procedures used in modern photogrammetry, including laser scanning, are discussed. Example problems clarify computational procedures and extensive photographs and diagrams illustrate the material presented in this comprehensive resource. Coverage includes: Principles of photography and imaging Cameras and other imaging devices Image measurements and refinements Object space coordinate systems Vertical photographs Stereoscopic viewing Stereoscopic parallax Stereoscopic plotting instruments Laser scanning systems Elementary methods of planimetric mapping for GIS Titled and oblique photographs Introduction to analytical photogrammetry Topographic mapping and spatial data collection Fundamental principles of digital image processing Photogrammetric applications in GIS Control for aerial photogrammetry Aerotriangulation Project planning Terrestrial and close-range photogrammetry
Author | : Wu-Sheng Lu |
Publisher | : CRC Press |
Total Pages | : 420 |
Release | : 2020-08-11 |
Genre | : Technology & Engineering |
ISBN | : 1000147770 |
Presents basic theories, techniques, and procedures used to analyze, design, and implement two-dimensional filters; and surveys a number of applications in image and seismic data processing that demonstrate their use in real-world signal processing. For graduate students in electrical and computer e
Author | : Jean-Pierre Antoine |
Publisher | : Cambridge University Press |
Total Pages | : 478 |
Release | : 2008-06-12 |
Genre | : Technology & Engineering |
ISBN | : 1139453149 |
Two-dimensional wavelets offer a number of advantages over discrete wavelet transforms, in particular for analysis of real-time signals. This book provides thorough and comprehensive treatment of 2-D wavelets, with extensive use of practical applications and illustrative examples throughout. For engineers, physicists and mathematicians.
Author | : Jiri Jan |
Publisher | : CRC Press |
Total Pages | : 574 |
Release | : 2019-08-30 |
Genre | : Medical |
ISBN | : 135138791X |
Differently oriented specialists and students involved in image processing and analysis need to have a firm grasp of concepts and methods used in this now widely utilized area. This book aims at being a single-source reference providing such foundations in the form of theoretical yet clear and easy to follow explanations of underlying generic concepts. Medical Image Processing, Reconstruction and Analysis – Concepts and Methods explains the general principles and methods of image processing and analysis, focusing namely on applications used in medical imaging. The content of this book is divided into three parts: Part I – Images as Multidimensional Signals provides the introduction to basic image processing theory, explaining it for both analogue and digital image representations. Part II – Imaging Systems as Data Sources offers a non-traditional view on imaging modalities, explaining their principles influencing properties of the obtained images that are to be subsequently processed by methods described in this book. Newly, principles of novel modalities, as spectral CT, functional MRI, ultrafast planar-wave ultrasonography and optical coherence tomography are included. Part III – Image Processing and Analysis focuses on tomographic image reconstruction, image fusion and methods of image enhancement and restoration; further it explains concepts of low-level image analysis as texture analysis, image segmentation and morphological transforms. A new chapter deals with selected areas of higher-level analysis, as principal and independent component analysis and particularly the novel analytic approach based on deep learning. Briefly, also the medical image-processing environment is treated, including processes for image archiving and communication. Features Presents a theoretically exact yet understandable explanation of image processing and analysis concepts and methods Offers practical interpretations of all theoretical conclusions, as derived in the consistent explanation Provides a concise treatment of a wide variety of medical imaging modalities including novel ones, with respect to properties of provided image data
Author | : K. Ramamohan Rao |
Publisher | : Academic Press |
Total Pages | : 517 |
Release | : 2014-06-28 |
Genre | : Mathematics |
ISBN | : 0080925340 |
This is the first comprehensive treatment of the theoretical aspects of the discrete cosine transform (DCT), which is being recommended by various standards organizations, such as the CCITT, ISO etc., as the primary compression tool in digital image coding. The main purpose of the book is to provide a complete source for the user of this signal processing tool, where both the basics and the applications are detailed. An extensive bibliography covers both the theory and applications of the DCT. The novice will find the book useful in its self-contained treatment of the theory of the DCT, the detailed description of various algorithms supported by computer programs and the range of possible applications, including codecs used for teleconferencing, videophone, progressive image transmission, and broadcast TV. The more advanced user will appreciate the extensive references. Tables describing ASIC VLSI chips for implementing DCT, and motion estimation and details on image compression boards are also provided.
Author | : Steven L. Brunton |
Publisher | : Cambridge University Press |
Total Pages | : 615 |
Release | : 2022-05-05 |
Genre | : Computers |
ISBN | : 1009098489 |
A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.
Author | : Artyom M. Grigoryan |
Publisher | : CRC Press |
Total Pages | : 468 |
Release | : 2018-09-03 |
Genre | : Technology & Engineering |
ISBN | : 1351832379 |
Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB® introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New concepts include methods of transferring the geometry of rays from the plane to the Cartesian lattice, the point map of projections, the particle and its field function, and the statistical model of averaging. The authors supply numerous examples, MATLAB®-based programs, end-of-chapter problems, and experimental results of implementation. The main approach for image reconstruction proposed by the authors differs from existing methods of back-projection, iterative reconstruction, and Fourier and Radon filtering. In this book, the authors explain how to process each projection by a system of linear equations, or linear convolutions, to calculate the corresponding part of the 2-D tensor or paired transform of the discrete image. They then describe how to calculate the inverse transform to obtain the reconstruction. The proposed models for image reconstruction from projections are simple and result in more accurate reconstructions. Introducing a new theory and methods of image reconstruction, this book provides a solid grounding for those interested in further research and in obtaining new results. It encourages readers to develop effective applications of these methods in CT.
Author | : Alexander D. Poularikas |
Publisher | : CRC Press |
Total Pages | : 911 |
Release | : 2018-09-03 |
Genre | : Mathematics |
ISBN | : 1420066536 |
Updating the original, Transforms and Applications Handbook, Third Edition solidifies its place as the complete resource on those mathematical transforms most frequently used by engineers, scientists, and mathematicians. Highlighting the use of transforms and their properties, this latest edition of the bestseller begins with a solid introduction to signals and systems, including properties of the delta function and some classical orthogonal functions. It then goes on to detail different transforms, including lapped, Mellin, wavelet, and Hartley varieties. Written by top experts, each chapter provides numerous examples and applications that clearly demonstrate the unique purpose and properties of each type. The material is presented in a way that makes it easy for readers from different backgrounds to familiarize themselves with the wide range of transform applications. Revisiting transforms previously covered, this book adds information on other important ones, including: Finite Hankel, Legendre, Jacobi, Gengenbauer, Laguerre, and Hermite Fraction Fourier Zak Continuous and discrete Chirp-Fourier Multidimensional discrete unitary Hilbert-Huang Most comparable books cover only a few of the transforms addressed here, making this text by far the most useful for anyone involved in signal processing—including electrical and communication engineers, mathematicians, and any other scientist working in this field.
Author | : Artyom M. Grigoryan |
Publisher | : CRC Press |
Total Pages | : 550 |
Release | : 2003-07-31 |
Genre | : Technology & Engineering |
ISBN | : 9780824745967 |
This reference presents a more efficient, flexible, and manageable approach to unitary transform calculation and examines novel concepts in the design, classification, and management of fast algorithms for different transforms in one-, two-, and multidimensional cases. Illustrating methods to construct new unitary transforms for best algorithm selection and development in real-world applications, the book contains a wide range of examples to compare the efficacy of different algorithms in a variety of one-, two-, and three-dimensional cases. Multidimensional Discrete Unitary Transforms builds progressively from simple representative cases to higher levels of generalization.
Author | : Paul S. Addison |
Publisher | : CRC Press |
Total Pages | : 465 |
Release | : 2017-01-06 |
Genre | : Mathematics |
ISBN | : 1482251337 |
This second edition of The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance has been fully updated and revised to reflect recent developments in the theory and practical applications of wavelet transform methods. The book is designed specifically for the applied reader in science, engineering, medicine and finance. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, while readers already acquainted with wavelets can use the book to broaden their perspective. One of the many strengths of the book is its use of several hundred illustrations, some in colour, to convey key concepts and their varied practical uses. Chapters exploring these practical applications highlight both the similarities and differences in wavelet transform methods across different disciplines and also provide a comprehensive list of over 1000 references that will serve as a valuable resource for further study. Paul Addison is a Technical Fellow with Medtronic, a global medical technology company. Previously, he was co-founder and CEO of start-up company, CardioDigital Ltd (and later co-founded its US subsidiary, CardioDigital Inc) - a company concerned with the development of novel wavelet-based methods for biosignal analysis. He has a master’s degree in engineering and a PhD in fluid mechanics, both from the University of Glasgow, Scotland (founded 1451). His former academic life as a tenured professor of fluids engineering included the output of a large number of technical papers, covering many aspects of engineering and bioengineering, and two textbooks: Fractals and Chaos: An Illustrated Course and the first edition of The Illustrated Wavelet Transform Handbook. At the time of publication, the author has over 100 issued US patents concerning a wide range of medical device technologies, many of these concerning the wavelet transform analysis of biosignals. He is both a Chartered Engineer and Chartered Physicist.