Two Dimensional Acoustic Propagation Through Oceanic Internal Solitary Waves
Download Two Dimensional Acoustic Propagation Through Oceanic Internal Solitary Waves full books in PDF, epub, and Kindle. Read online free Two Dimensional Acoustic Propagation Through Oceanic Internal Solitary Waves ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Arata Kaneko |
Publisher | : Elsevier |
Total Pages | : 363 |
Release | : 2020-02-05 |
Genre | : Science |
ISBN | : 0128189428 |
Coastal Acoustic Tomography begins with the specifics required for designing a Coastal Acoustic Tomography (CAT) experiment and operating the CAT system in coastal seas. Following sections discuss the procedure for data analyses and various application examples of CAT to coastal/shallow seas (obtained in various locations). These sections are broken down into four kinds of methods: horizontal-slice inversion, vertical-slice inversion, modal expansion method and data assimilation. This book emphasizes how dynamic phenomena occurring in coastal/shallow seas can be analyzed using the standard method of inversion and data assimilation. The book is relevant for physical oceanographers, ocean environmentalists and ocean dynamists, focusing on the event being observed rather than the intrinsic details of observational processes. Application examples of successful dynamic phenomena measured by coastal acoustic tomography are also included. - Provides the information needed for researchers and graduate students in physical oceanography, ocean-fluid dynamics and ocean environments to apply Ocean Acoustic Tomography (OAT) to their own fields - Presents the benefits of using acoustic tomography, including less disturbance to aquatic environments vs. other monitoring methods - Includes the assimilation of CAT data into a coastal sea circulation model, a powerful tool to predict coastal-sea environmental changes
Author | : John A. Colosi |
Publisher | : Cambridge University Press |
Total Pages | : 443 |
Release | : 2016-06-20 |
Genre | : Science |
ISBN | : 1316684032 |
The ocean is opaque to electromagnetic radiation and transparent to low frequency sound, so acoustical methodologies are an important tool for sensing the undersea world. Stochastic sound-speed fluctuations in the ocean, such as those caused by internal waves, result in a progressive randomisation of acoustic signals as they traverse the ocean environment. This signal randomisation imposes a limit to the effectiveness of ocean acoustic remote sensing, navigation and communication. Sound Propagation through the Stochastic Ocean provides a comprehensive treatment of developments in the field of statistical ocean acoustics over the last 35 years. This will be of fundamental interest to oceanographers, marine biologists, geophysicists, engineers, applied mathematicians, and physicists. Key discoveries in topics such as internal waves, ray chaos, Feynman path integrals, and mode transport theory are addressed with illustrations from ocean observations. The topics are presented at an approachable level for advanced students and seasoned researchers alike.
Author | : Thomas Neighbors |
Publisher | : Elsevier |
Total Pages | : 982 |
Release | : 2017-01-19 |
Genre | : Science |
ISBN | : 0128112476 |
Applied Underwater Acoustics meets the needs of scientists and engineers working in underwater acoustics and graduate students solving problems in, and preparing theses on, topics in underwater acoustics. The book is structured to provide the basis for rapidly assimilating the essential underwater acoustic knowledge base for practical application to daily research and analysis. Each chapter of the book is self-supporting and focuses on a single topic and its relation to underwater acoustics. The chapters start with a brief description of the topic's physical background, necessary definitions, and a short description of the applications, along with a roadmap to the chapter. The subtopics covered within individual subchapters include most frequently used equations that describe the topic. Equations are not derived, rather, assumptions behind equations and limitations on the applications of each equation are emphasized. Figures, tables, and illustrations related to the sub-topic are presented in an easy-to-use manner, and examples on the use of the equations, including appropriate figures and tables are also included. - Provides a complete and up-to-date treatment of all major subjects of underwater acoustics - Presents chapters written by recognized experts in their individual field - Covers the fundamental knowledge scientists and engineers need to solve problems in underwater acoustics - Illuminates, in shorter sub-chapters, the modern applications of underwater acoustics that are described in worked examples - Demands no prior knowledge of underwater acoustics, and the physical principles and mathematics are designed to be readily understood by scientists, engineers, and graduate students of underwater acoustics - Includes a comprehensive list of literature references for each chapter
Author | : Klaus Wyrtki |
Publisher | : |
Total Pages | : 204 |
Release | : 1961 |
Genre | : China Sea |
ISBN | : |
Author | : Peter Janssen |
Publisher | : Cambridge University Press |
Total Pages | : 310 |
Release | : 2004-10-28 |
Genre | : Science |
ISBN | : 0521465400 |
This book was published in 2004. The Interaction of Ocean Waves and Wind describes in detail the two-way interaction between wind and ocean waves and shows how ocean waves affect weather forecasting on timescales of 5 to 90 days. Winds generate ocean waves, but at the same time airflow is modified due to the loss of energy and momentum to the waves; thus, momentum loss from the atmosphere to the ocean depends on the state of the waves. This volume discusses ocean wave evolution according to the energy balance equation. An extensive overview of nonlinear transfer is given, and as a by-product the role of four-wave interactions in the generation of extreme events, such as freak waves, is discussed. Effects on ocean circulation are described. Coupled ocean-wave, atmosphere modelling gives improved weather and wave forecasts. This volume will interest ocean wave modellers, physicists and applied mathematicians, and engineers interested in shipping and coastal protection.
Author | : John R. Apel |
Publisher | : Elsevier |
Total Pages | : 656 |
Release | : 2013-10-22 |
Genre | : Science |
ISBN | : 1483288056 |
In recent years, significant advances in both the theoretical and observational sides of physical oceanography have allowed the ocean's physical behavior to be described more quantitatively. This book discusses the physical mechanisms and processes of the sea, and will be valuable not only to oceanographers but also physicists, graduate students, and scientists working in dynamics or optics of the marine environment.
Author | : Michael Meredith |
Publisher | : Elsevier |
Total Pages | : 386 |
Release | : 2021-09-16 |
Genre | : Science |
ISBN | : 0128215135 |
Ocean Mixing: Drivers, Mechanisms and Impacts presents a broad panorama of one of the most rapidly-developing areas of marine science. It highlights the state-of-the-art concerning knowledge of the causes of ocean mixing, and a perspective on the implications for ocean circulation, climate, biogeochemistry and the marine ecosystem. This edited volume places a particular emphasis on elucidating the key future questions relating to ocean mixing, and emerging ideas and activities to address them, including innovative technology developments and advances in methodology. Ocean Mixing is a key reference for those entering the field, and for those seeking a comprehensive overview of how the key current issues are being addressed and what the priorities for future research are. Each chapter is written by established leaders in ocean mixing research; the volume is thus suitable for those seeking specific detailed information on sub-topics, as well as those seeking a broad synopsis of current understanding. It provides useful ammunition for those pursuing funding for specific future research campaigns, by being an authoritative source concerning key scientific goals in the short, medium and long term. Additionally, the chapters contain bespoke and informative graphics that can be used in teaching and science communication to convey the complex concepts and phenomena in easily accessible ways. - Presents a coherent overview of the state-of-the-art research concerning ocean mixing - Provides an in-depth discussion of how ocean mixing impacts all scales of the planetary system - Includes elucidation of the grand challenges in ocean mixing, and how they might be addressed
Author | : Antony Joseph |
Publisher | : Elsevier |
Total Pages | : 614 |
Release | : 2016-12-08 |
Genre | : Science |
ISBN | : 0128093633 |
Investigating Seafloors and Oceans: From Mud Volcanoes to Giant Squid offers a bottom-to-top tour of the world's oceans, exposing the secrets hidden therein from a variety of scientific perspectives. Opening with a discussion of the earth's formation, hot spots, ridges, plate tectonics, submarine trenches, and cold seeps, the text goes on to address such topics as the role of oceans in the origin of life, tidal bore, thermal effects, ecosystem services, marine creatures, and nutraceutical and pharmaceutical resources. This unique reference provides insight into a wide array of questions that researchers continue to ask about the vast study of oceans and the seafloor. It is a one-of-a-kind examination of oceans that offers important perspectives for researchers, practitioners, and academics in all marine-related fields. - Includes chapters addressing various scientific disciplines, offering the opportunity for readers to gain insights on diverse topics in the study of oceans - Provides scientific discussion on thermo-tolerant microbial life in sub-seafloor hot sediments and vent fields, as well as the origin of life debates and the puzzles revolving around how life originated - Includes detailed information on the origin of dreaded episodes, such as volcanic eruptions, earthquakes, tsunamis, internal waves and tidal bores - Contains information on the contribution of the oceans in terms of providing useful nutraceutical and pharmaceutical products
Author | : Arkadi Berezovski |
Publisher | : Springer Nature |
Total Pages | : 396 |
Release | : 2019-11-16 |
Genre | : Mathematics |
ISBN | : 3030299511 |
This book gathers contributions on various aspects of the theory and applications of linear and nonlinear waves and associated phenomena, as well as approaches developed in a global partnership of researchers with the national Centre of Excellence in Nonlinear Studies (CENS) at the Department of Cybernetics of Tallinn University of Technology in Estonia. The papers chiefly focus on the role of mathematics in the analysis of wave phenomena. They highlight the complexity of related topics concerning wave generation, propagation, transformation and impact in solids, gases, fluids and human tissues, while also sharing insights into selected mathematical methods for the analytical and numerical treatment of complex phenomena. In addition, the contributions derive advanced mathematical models, share innovative ideas on computing, and present novel applications for a number of research fields where both linear and nonlinear wave problems play an important role. The papers are written in a tutorial style, intended for non-specialist researchers and students. The authors first describe the basics of a problem that is currently of interest in the scientific community, discuss the state of the art in related research, and then share their own experiences in tackling the problem. Each chapter highlights the importance of applied mathematics for central issues in the study of waves and associated complex phenomena in different media. The topics range from basic principles of wave mechanics up to the mathematics of Planet Earth in the broadest sense, including contemporary challenges in the mathematics of society. In turn, the areas of application range from classic ocean wave mathematics to material science, and to human nerves and tissues. All contributions describe the approaches in a straightforward manner, making them ideal material for educational purposes, e.g. for courses, master class lectures, or seminar presentations.
Author | : M. Schwartz |
Publisher | : |
Total Pages | : 968 |
Release | : 1982 |
Genre | : Nature |
ISBN | : |
This book should be of interest to geologists; biologists; environmentalists; ecologists; engineers; lecturers and students in related subjects; libraries.