Tutorial on Reed-Solomon Error Correction Coding
Author | : William A. Geisel |
Publisher | : |
Total Pages | : 144 |
Release | : 1990 |
Genre | : Error-correcting codes (Information theory) |
ISBN | : |
Download Tutorial On Reed Solomon Error Correction Coding full books in PDF, epub, and Kindle. Read online free Tutorial On Reed Solomon Error Correction Coding ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : William A. Geisel |
Publisher | : |
Total Pages | : 144 |
Release | : 1990 |
Genre | : Error-correcting codes (Information theory) |
ISBN | : |
Author | : National Aeronautics and Space Administration (NASA) |
Publisher | : Createspace Independent Publishing Platform |
Total Pages | : 144 |
Release | : 2018-07-23 |
Genre | : |
ISBN | : 9781723468520 |
This tutorial attempts to provide a frank, step-by-step approach to Reed-Solomon (RS) error correction coding. RS encoding and RS decoding both with and without erasing code symbols are emphasized. There is no need to present rigorous proofs and extreme mathematical detail. Rather, the simple concepts of groups and fields, specifically Galois fields, are presented with a minimum of complexity. Before RS codes are presented, other block codes are presented as a technical introduction into coding. A primitive (15, 9) RS coding example is then completely developed from start to finish, demonstrating the encoding and decoding calculations and a derivation of the famous error-locator polynomial. The objective is to present practical information about Reed-Solomon coding in a manner such that it can be easily understood. Geisel, William A. Johnson Space Center CODING; DECODING; ERROR ANALYSIS; FIELD THEORY (ALGEBRA); MAXIMUM LIKELIHOOD ESTIMATES; POLYNOMIALS; ERRORS; PROVING; SYMBOLS...
Author | : Martin Tomlinson |
Publisher | : Springer |
Total Pages | : 527 |
Release | : 2017-02-21 |
Genre | : Technology & Engineering |
ISBN | : 3319511033 |
This book discusses both the theory and practical applications of self-correcting data, commonly known as error-correcting codes. The applications included demonstrate the importance of these codes in a wide range of everyday technologies, from smartphones to secure communications and transactions. Written in a readily understandable style, the book presents the authors’ twenty-five years of research organized into five parts: Part I is concerned with the theoretical performance attainable by using error correcting codes to achieve communications efficiency in digital communications systems. Part II explores the construction of error-correcting codes and explains the different families of codes and how they are designed. Techniques are described for producing the very best codes. Part III addresses the analysis of low-density parity-check (LDPC) codes, primarily to calculate their stopping sets and low-weight codeword spectrum which determines the performance of th ese codes. Part IV deals with decoders designed to realize optimum performance. Part V describes applications which include combined error correction and detection, public key cryptography using Goppa codes, correcting errors in passwords and watermarking. This book is a valuable resource for anyone interested in error-correcting codes and their applications, ranging from non-experts to professionals at the forefront of research in their field. This book is open access under a CC BY 4.0 license.
Author | : Richard E. Blahut |
Publisher | : Cambridge University Press |
Total Pages | : 617 |
Release | : 2003-02-06 |
Genre | : Technology & Engineering |
ISBN | : 1139435078 |
The need to transmit and store massive amounts of data reliably and without error is a vital part of modern communications systems. Error-correcting codes play a fundamental role in minimising data corruption caused by defects such as noise, interference, crosstalk and packet loss. This book provides an accessible introduction to the basic elements of algebraic codes, and discusses their use in a variety of applications. The author describes a range of important coding techniques, including Reed-Solomon codes, BCH codes, trellis codes, and turbocodes. Throughout the book, mathematical theory is illustrated by reference to many practical examples. The book was first published in 2003 and is aimed at graduate students of electrical and computer engineering, and at practising engineers whose work involves communications or signal processing.
Author | : Benjamin Arazi |
Publisher | : MIT Press |
Total Pages | : 232 |
Release | : 1988 |
Genre | : Computers |
ISBN | : 9780262010986 |
Teaching the theory of error correcting codes on an introductory level is a difficulttask. The theory, which has immediate hardware applications, also concerns highly abstractmathematical concepts. This text explains the basic circuits in a refreshingly practical way thatwill appeal to undergraduate electrical engineering students as well as to engineers and techniciansworking in industry.Arazi's truly commonsense approach provides a solid grounding in the subject,explaining principles intuitively from a hardware perspective. He fully covers error correctiontechniques, from basic parity check and single error correction cyclic codes to burst errorcorrecting codes and convolutional codes. All this he presents before introducing Galois fieldtheory - the basic algebraic treatment and theoretical basis of the subject, which usually appearsin the opening chapters of standard textbooks. One entire chapter is devoted to specific practicalissues, such as Reed-Solomon codes (used in compact disc equipment), and maximum length sequences(used in various fields of communications). The basic circuits explained throughout the book areredrawn and analyzed from a theoretical point of view for readers who are interested in tackling themathematics at a more advanced level.Benjamin Arazi is an Associate Professor in the Department ofElectrical and Computer Engineering at the Ben-Gurion University of the Negev. His book is includedin the Computer Systems Series, edited by Herb Schwetman.
Author | : Lin Shu |
Publisher | : Pearson Education India |
Total Pages | : 1276 |
Release | : 2011 |
Genre | : Error-correcting codes (Information theory) |
ISBN | : 9788131734407 |
Author | : Elwyn R Berlekamp |
Publisher | : World Scientific |
Total Pages | : 501 |
Release | : 2015-03-26 |
Genre | : Mathematics |
ISBN | : 981463591X |
This is the revised edition of Berlekamp's famous book, 'Algebraic Coding Theory', originally published in 1968, wherein he introduced several algorithms which have subsequently dominated engineering practice in this field. One of these is an algorithm for decoding Reed-Solomon and Bose-Chaudhuri-Hocquenghem codes that subsequently became known as the Berlekamp-Massey Algorithm. Another is the Berlekamp algorithm for factoring polynomials over finite fields, whose later extensions and embellishments became widely used in symbolic manipulation systems. Other novel algorithms improved the basic methods for doing various arithmetic operations in finite fields of characteristic two. Other major research contributions in this book included a new class of Lee metric codes, and precise asymptotic results on the number of information symbols in long binary BCH codes.Selected chapters of the book became a standard graduate textbook.Both practicing engineers and scholars will find this book to be of great value.
Author | : Raymond W. Yeung |
Publisher | : Now Publishers Inc |
Total Pages | : 156 |
Release | : 2006 |
Genre | : Computers |
ISBN | : 1933019247 |
Provides a tutorial on the basics of network coding theory. Divided into two parts, this book presents a unified framework for understanding the basic notions and fundamental results in network coding. It is aimed at students, researchers and practitioners working in networking research.
Author | : Todd K. Moon |
Publisher | : John Wiley & Sons |
Total Pages | : 800 |
Release | : 2005-06-06 |
Genre | : Computers |
ISBN | : 0471648000 |
An unparalleled learning tool and guide to error correction coding Error correction coding techniques allow the detection and correction of errors occurring during the transmission of data in digital communication systems. These techniques are nearly universally employed in modern communication systems, and are thus an important component of the modern information economy. Error Correction Coding: Mathematical Methods and Algorithms provides a comprehensive introduction to both the theoretical and practical aspects of error correction coding, with a presentation suitable for a wide variety of audiences, including graduate students in electrical engineering, mathematics, or computer science. The pedagogy is arranged so that the mathematical concepts are presented incrementally, followed immediately by applications to coding. A large number of exercises expand and deepen students' understanding. A unique feature of the book is a set of programming laboratories, supplemented with over 250 programs and functions on an associated Web site, which provides hands-on experience and a better understanding of the material. These laboratories lead students through the implementation and evaluation of Hamming codes, CRC codes, BCH and R-S codes, convolutional codes, turbo codes, and LDPC codes. This text offers both "classical" coding theory-such as Hamming, BCH, Reed-Solomon, Reed-Muller, and convolutional codes-as well as modern codes and decoding methods, including turbo codes, LDPC codes, repeat-accumulate codes, space time codes, factor graphs, soft-decision decoding, Guruswami-Sudan decoding, EXIT charts, and iterative decoding. Theoretical complements on performance and bounds are presented. Coding is also put into its communications and information theoretic context and connections are drawn to public key cryptosystems. Ideal as a classroom resource and a professional reference, this thorough guide will benefit electrical and computer engineers, mathematicians, students, researchers, and scientists.