Turbulent Jets and Plumes

Turbulent Jets and Plumes
Author: Joseph Hun-wei Lee
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2012-12-06
Genre: Science
ISBN: 1461504074

Jets and plumes are shear flows produced by momentum and buoyancy forces. Examples include smokestack emissions, fires and volcano eruptions, deep sea vents, thermals, sewage discharges, thermal effluents from power stations, and ocean dumping of sludge. Knowledge of turbulent mixing by jets and plumes is important for environmental control, impact and risk assessment. Turbulent Jets and Plumes introduces the fundamental concepts and develops a Lagrangian approach to model these shear flows. This theme persists throughout the text, starting from simple cases and building towards the practically important case of a turbulent buoyant jet in a density-stratified crossflow. Basic ideas are illustrated by ample use of flow visualization using the laser-induced fluorescence technique. The text includes many illustrative worked examples, comparisons of model predictions with laboratory and field data, and classroom tested problems. An interactive PC-based virtual-reality modelling software (VISJET) is also provided. Engineering and science students, researchers and practitioners may use the book both as an introduction to the subject and as a reference in hydraulics and environmental fluid mechanics.

Turbulent Buoyant Jets and Plumes

Turbulent Buoyant Jets and Plumes
Author: Wolfgang Rodi
Publisher: Elsevier
Total Pages: 193
Release: 2014-05-09
Genre: Technology & Engineering
ISBN: 1483189872

The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then examines a turbulence model for buoyant flows and its application to vertical buoyant jets, including mathematical model, calculation of vertical buoyant jets, and explanation of velocity and temperature spreading in pure jets and pure plumes. The publication is a dependable reference for scientists and readers interested in turbulent buoyant jets and plumes.

Mixing and Dispersion in Stably Stratified Flows

Mixing and Dispersion in Stably Stratified Flows
Author: P. A. Davies
Publisher: Oxford University Press
Total Pages: 668
Release: 1999
Genre: Diffusion in hydrology
ISBN: 9780198500155

Stratified flows are important in determining how various atmospheric and environmental processes occur. The book investigates these processes and focuses on the methods by which pollutants are mixed and dispersed in natural and industrial environments.

Negatively Buoyant Jets in a Cross Flow

Negatively Buoyant Jets in a Cross Flow
Author: Jerry Lee Anderson
Publisher:
Total Pages: 242
Release: 1973
Genre: Thermal pollution of rivers, lakes, etc
ISBN:

"Negatively buoyant jets, or sinking jets, can be observed in many problems of pollutant discharge. Any chemical waste that is heavier than the receiving water into which it is discharged may act as a negatively buoyant jet. In addition, when water is taken from the hypolimnion of a deep lake or reservoir and used as cooling water, the temperature, and consequently, the discharge may behave like a negatively buoyant jet. Two existing jet diffusion models have been utilized to predict the trajectory and dilution of a positively buoyant jet, or a rising jet, and have been modified to account for the sinking effect. Twenty-four experimental investigations were conducted involving different combinations of densimetric Froude number, velocity ratios, and initial angle of discharge. Salt was used as the tracer, yielding a fluid that was denser than the ambient receiving water and facilitated measuring concentration profiles of the jet plume. The coefficient of entrainment, the major mechanism of dilution, was determined as a function of the densimetric Froude number, velocity ratio, and initial angle of discharge. The reducted drag coefficient was chosen as zero for both models since any other value would predict a trajectory whose rise would be less than experimentally observed. For all angles of discharge the entrainment coefficient increased with a decrease in the velocity ratio and with an increase in densimetric Froude number. Additionally, there was a marked decrease in the entrainmnet coefficient with a decrease in the initial angle of discharge."--Page ii.

Heated Surface Jet Discharged Into a Flowing Ambient Stream

Heated Surface Jet Discharged Into a Flowing Ambient Stream
Author: Louis H. Motz
Publisher:
Total Pages: 228
Release: 1972
Genre: Heat
ISBN:

The temperature distribution in the water body due to a discharge of waste heat from a thermal-electrical plant is a function of the hydrodynamic variables of the discharge and the receiving water body. The temperature distribution can be described in terms of a surface jet discharging at some initial angle to the ambient flow and being deflected downstream by the momentum of the ambient velocity. It is assumed that in the vicinity of the surface jet, heat loss to the atmosphere is negligible. It is concluded that the application of the two dimensional surface jet model is dependent on the velocity ratio and the initial angle of discharge, and the value of the initial Richardson number, as low as 0.22. Both laboratory and field data are used for verification of the model which has been developed. Laboratory data is used to evaluate the two needed cooefficients, a drag coefficient and an entrainment coefficient, as well as the length of the zone of flow establishment and the angle at the end of that zone. The drag coefficient and characteristics of the establishment zone are found to be functions of the velocity ratio (ambient velocity/jet velocity), while the entrainment coefficient is primarily a function of geometry.

Environmental Hydrology

Environmental Hydrology
Author: V.P. Singh
Publisher: Springer Science & Business Media
Total Pages: 496
Release: 2013-03-09
Genre: Science
ISBN: 9401714398

Environmental Hydrology presents a unified approach to the role of hydrology in environmental planning and management, emphasizing the consideration of the hydrological continuum in determining the fate and migration of chemicals as well as micro-organisms in the environment, both below the ground as well as on it. The eco-hydrological consequences of environmental management are also discussed, and an up-to-date account of the mathematical modeling of pollution is also presented. Audience: Invaluable reading for senior undergraduates and beginning graduates, civil, environmental, and agricultural engineers, and geologists and climatologists.

Manipulation and Control of Jets in Crossflow

Manipulation and Control of Jets in Crossflow
Author: Ann R. Karagozian
Publisher: Springer Science & Business Media
Total Pages: 320
Release: 2003-06-12
Genre: Technology & Engineering
ISBN: 9783211007532

Fundamental Non-Reactive Jets in Crossflow and Other Jet Systems; Background on Modeling, Dynamical Systems, and Control; Reactive Jets in Crossflow and Multiphase Jets; Controlled Jets in Crossflow and Control via Jet Systems;