Turbulence Measurements In The Wall Jet Layer Of Impinging Round Jet
Download Turbulence Measurements In The Wall Jet Layer Of Impinging Round Jet full books in PDF, epub, and Kindle. Read online free Turbulence Measurements In The Wall Jet Layer Of Impinging Round Jet ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : D. Laurence |
Publisher | : Elsevier |
Total Pages | : 975 |
Release | : 1999-04-14 |
Genre | : Science |
ISBN | : 0080530982 |
These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.
Author | : W. Rodi |
Publisher | : Elsevier |
Total Pages | : 1029 |
Release | : 2002-08-21 |
Genre | : Mathematics |
ISBN | : 008053094X |
Turbulence is one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends increasingly on the performance of the turbulence models. This series of symposia provides a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. The papers in this set of proceedings were presented at the 5th International Symposium on Engineering Turbulence Modelling and Measurements in September 2002. They look at a variety of areas, including: Turbulence modelling; Direct and large-eddy simulations; Applications of turbulence models; Experimental studies; Transition; Turbulence control; Aerodynamic flow; Aero-acoustics; Turbomachinery flows; Heat transfer; Combustion systems; Two-phase flows. These papers are preceded by a section containing 6 invited papers covering various aspects of turbulence modelling and simulation as well as their practical application, combustion modelling and particle-image velocimetry.
Author | : Genrikh Naumovich Abramovich |
Publisher | : Mit Press |
Total Pages | : 671 |
Release | : 1963 |
Genre | : Technology & Engineering |
ISBN | : 9780262010085 |
The author's first monograph on turbulent jets, in 1936, dealt solely with a free submerged jet. Since that time, the theory of the turbulent jet has been developed in many published works both in the USSR and abroad: it has been enriched with a large amount of experimental material and has been applied in many new fields of engineering. In the last 10 years very substantial progress has been made, and it has now become possible to go beyond the free submerged jet and to solve the problem of a jet in a stream of fluid, to take into account the interaction between the jet and solid walls, to ascertain the relationship between the contour of the jet and the ratio of its density to the density of the surrounding medium, and to establish the characteristic features of a supersonic jet. This monograph contains the results of further research by the author and his colleagues, as well as a critical reappraisal of the more important theoretical and experimental data published by other investigators. The first section deals with the theory of a turbulent jet of incompressible fluid. It gives a systematic analysis of numerous experimental data on velocity profiles, temperature, and the impurity concentration, as well as the outlines of the turbulent mixing lone. The second section sets forth the theory of turbulent gas jets, including strongly preheated and supersonic jets. The theory of free turbulence in a gas, suitable in principle for any degree of compressibility, is revised, and the equations are derived for motion and heat exchange in the boundary layer of a jet at very high temperature. The third section solves several problems of the spreading of jets in finite and semifinite space, and the fourth section describes various applications of the theory of jets, many of which are reported for the first time or have been significantly revised.
Author | : A. A. R. Townsend |
Publisher | : Cambridge University Press |
Total Pages | : 450 |
Release | : 1976 |
Genre | : Mathematics |
ISBN | : 9780521298193 |
Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.
Author | : T. Cebeci |
Publisher | : Springer Science & Business Media |
Total Pages | : 497 |
Release | : 2013-04-18 |
Genre | : Science |
ISBN | : 366202411X |
This volume is concerned with the transport of thermal energy in flows of practical significance. The temperature distributions which result from convective heat transfer, in contrast to those associated with radiation heat transfer and conduction in solids, are related to velocity characteristics and we have included sufficient information of momentum transfer to make the book self-contained. This is readily achieved because of the close relation ship between the equations which represent conservation of momentum and energy: it is very desirable since convective heat transfer involves flows with large temperature differences, where the equations are coupled through an equation of state, as well as flows with small temperature differences where the energy equation is dependent on the momentum equation but the momentum equation is assumed independent of the energy equation. The equations which represent the conservation of scalar properties, including thermal energy, species concentration and particle number density can be identical in form and solutions obtained in terms of one dependent variable can represent those of another. Thus, although the discussion and arguments of this book are expressed in terms of heat transfer, they are relevant to problems of mass and particle transport. Care is required, however, in making use of these analogies since, for example, identical boundary conditions are not usually achieved in practice and mass transfer can involve more than one dependent variable.
Author | : |
Publisher | : |
Total Pages | : 44 |
Release | : 1970 |
Genre | : Heat |
ISBN | : |
Author | : Jean Piquet |
Publisher | : Springer Science & Business Media |
Total Pages | : 767 |
Release | : 2013-04-17 |
Genre | : Technology & Engineering |
ISBN | : 3662035596 |
obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.
Author | : United States. National Bureau of Standards |
Publisher | : |
Total Pages | : 696 |
Release | : 1968 |
Genre | : Hydraulic engineering |
ISBN | : |
Author | : United States. National Bureau of Standards |
Publisher | : |
Total Pages | : 384 |
Release | : 1978 |
Genre | : Hydraulic engineering |
ISBN | : |
Author | : N. Rajaratnam |
Publisher | : Elsevier |
Total Pages | : 315 |
Release | : 1976-01-01 |
Genre | : Science |
ISBN | : 0080869963 |