Turbomachinery International
Author | : |
Publisher | : |
Total Pages | : 314 |
Release | : 2004 |
Genre | : Turbomachines |
ISBN | : |
Vols. for 1977- include a section: Turbomachinery world news, called v. 1-
Download Turbomachinery International full books in PDF, epub, and Kindle. Read online free Turbomachinery International ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : |
Publisher | : |
Total Pages | : 314 |
Release | : 2004 |
Genre | : Turbomachines |
ISBN | : |
Vols. for 1977- include a section: Turbomachinery world news, called v. 1-
Author | : Bijay Sultanian |
Publisher | : CRC Press |
Total Pages | : 319 |
Release | : 2019-01-15 |
Genre | : Science |
ISBN | : 135185027X |
Logan's Turbomachinery: Flowpath Design and Performance Fundamentals, Third Edition is the long-awaited revision of this classic textbook, thoroughly updated by Dr. Bijay Sultanian. While the basic concepts remain constant, turbomachinery design has advanced since the Second Edition was published in 1993. Airfoils in modern turbomachines feature three-dimensional geometries, Computational Fluid Mechanics (CFD) has become a standard design tool, and major advances have been made in the materials and manufacturing technologies that affect turbomachinery design. The new edition adresses these trends to best serve today's students, and design engineers working in turbomachinery industries.
Author | : Earl Logan, Jr. |
Publisher | : CRC Press |
Total Pages | : 927 |
Release | : 2003-05-01 |
Genre | : Technology & Engineering |
ISBN | : 0203911997 |
Building on the success of its predecessor, Handbook of Turbomachinery, Second Edition presents new material on advances in fluid mechanics of turbomachinery, high-speed, rotating, and transient experiments, cooling challenges for constantly increasing gas temperatures, advanced experimental heat transfer and cooling effectiveness techniques, and propagation of wake and pressure disturbances. Completely revised and updated, it offers updated chapters on compressor design, rotor dynamics, and hydraulic turbines and features six new chapters on topics such as aerodynamic instability, flutter prediction, blade modeling in steam turbines, multidisciplinary design optimization.
Author | : David Gordon Wilson |
Publisher | : MIT Press |
Total Pages | : 625 |
Release | : 2014-09-12 |
Genre | : Technology & Engineering |
ISBN | : 0262526689 |
The second edition of a comprehensive textbook that introduces turbomachinery and gas turbines through design methods and examples. This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.
Author | : Meinhard T. Schobeiri |
Publisher | : Springer Science & Business Media |
Total Pages | : 535 |
Release | : 2004-11-12 |
Genre | : Technology & Engineering |
ISBN | : 3540223681 |
Over the past three decades turbomachines experienced a steep increase in efficiency and performance. Based on fundamental principles of turbomachinery thermo-fluid mechanics, numerous CFD based calculation methods are being developed to simulate the complex 3-dimensional, highly unsteady turbulent flow within turbine or compressor stages. The objective of this book is to present the fundamental principals of turbomachinery fluid-thermodynamic design process of turbine and compressor components, power generation and aircraft gas turbines in a unified and compact manner. The book provides senior undergraduate students, graduate students and engineers in the turbomachinery industry with a solid background of turbomachinery flow physics and performance fundamentals that are essential for understanding turbomachinery performance and flow complexes.
Author | : Budugur Lakshminarayana |
Publisher | : John Wiley & Sons |
Total Pages | : 846 |
Release | : 1995-12-15 |
Genre | : Technology & Engineering |
ISBN | : 9780471855460 |
Over the past three decades, information in the aerospace and mechanical engineering fields in general and turbomachinery in particular has grown at an exponential rate. Fluid Dynamics and Heat Transfer of Turbomachinery is the first book, in one complete volume, to bring together the modern approaches and advances in the field, providing the most up-to-date, unified treatment available on basic principles, physical aspects of the aerothermal field, analysis, performance, theory, and computation of turbomachinery flow and heat transfer. Presenting a unified approach to turbomachinery fluid dynamics and aerothermodynamics, the book concentrates on the fluid dynamic aspects of flows and thermodynamic considerations rather than on those related to materials, structure, or mechanical aspects. It covers the latest material and all types of turbomachinery used in modern-day aircraft, automotive, marine, spacecraft, power, and industrial applications; and there is an entire chapter devoted to modern approaches on computation of turbomachinery flow. An additional chapter on turbine cooling and heat transfer is unique for a turbomachinery book. The author has undertaken a systematic approach, through more than three hundred illustrations, in developing the knowledge base. He uses analysis and data correlation in his discussion of most recent developments in this area, drawn from over nine hundred references and from research projects carried out by various organizations in the United States and abroad. This book is extremely useful for anyone involved in the analysis, design, and testing of turbomachinery. For students, it can be used as a two-semester course of senior undergraduate or graduate study: the first semester dealing with the basic principles and analysis of turbomachinery, the second exploring three-dimensional viscid flows, computation, and heat transfer. Many sections are quite general and applicable to other areas in fluid dynamics and heat transfer. The book can also be used as a self-study guide to those who want to acquire this knowledge. The ordered, meticulous, and unified approach of Fluid Dynamics and Heat Transfer of Turbomachinery should make the specialization of turbomachinery in aerospace and mechanical engineering much more accessible to students and professionals alike, in universities, industry, and government. Turbomachinery theory, performance, and analysis made accessible with a new, unified approach For the first time in nearly three decades, here is a completely up-to-date and unified approach to turbomachinery fluid dynamics and aerothermodynamics. Combining the latest advances, methods, and approaches in the field, Fluid Dynamics and Heat Transfer of Turbomachinery features: The most comprehensive and complete coverage of the fluid dynamics and aerothermodynamics of turbomachinery to date A spotlight on the fluid dynamic aspects of flows and the thermodynamic considerations for turbomachinery (rather than the structural or material aspects) A detailed, step-by-step presentation of the analytical and computational models involved, which allows the reader to easily construct a flowchart from which to operate Critical reviews of all the existing analytical and numerical models, highlighting the advantages and drawbacks of each Comprehensive coverage of turbine cooling and heat transfer, a unique feature for a book on turbomachinery An appendix of basic computation techniques, numerous tables, and listings of common terminology, abbreviations, and nomenclature Broad in scope, yet concise, and drawing on the author's teaching experience and research projects for government and industry, Fluid Dynamics and Heat Transfer of Turbomachinery explains and simplifies an increasingly complex field. It is an invaluable resource for undergraduate and graduate students in aerospace and mechanical engineering specializing in turbomachinery, for research and design engineers, and for all professionals who are—or wish to be—at the cutting edge of this technology.
Author | : Naixing Chen |
Publisher | : John Wiley & Sons |
Total Pages | : 448 |
Release | : 2011-09-23 |
Genre | : Science |
ISBN | : 0470825014 |
Computational Fluid Dynamics (CFD) is now an essential and effective tool used in the design of all types of turbomachine, and this topic constitutes the main theme of this book. With over 50 years of experience in the field of aerodynamics, Professor Naixing Chen has developed a wide range of numerical methods covering almost the entire spectrum of turbomachinery applications. Moreover, he has also made significant contributions to practical experiments and real-life designs. The book focuses on rigorous mathematical derivation of the equations governing flow and detailed descriptions of the numerical methods used to solve the equations. Numerous applications of the methods to different types of turbomachine are given and, in many cases, the numerical results are compared to experimental measurements. These comparisons illustrate the strengths and weaknesses of the methods – a useful guide for readers. Lessons for the design of improved blading are also indicated after many applications. Presents real-world perspective to the past, present and future concern in turbomachinery Covers direct and inverse solutions with theoretical and practical aspects Demonstrates huge application background in China Supplementary instructional materials are available on the companion website Aerothermodynamics of Turbomachinery: Analysis and Design is ideal for senior undergraduates and graduates studying in the fields of mechanics, energy and power, and aerospace engineering; design engineers in the business of manufacturing compressors, steam and gas turbines; and research engineers and scientists working in the areas of fluid mechanics, aerodynamics, and heat transfer. Supplementary lecture materials for instructors are available at www.wiley.com/go/chenturbo