Transport Processes in a Direct Numerical Simulation of Turbulent Channel Flow

Transport Processes in a Direct Numerical Simulation of Turbulent Channel Flow
Author: John William Brooke
Publisher:
Total Pages: 536
Release: 1994
Genre:
ISBN:

A direct numerical simulation of fully-developed, time-dependent, three-dimensional turbulent flow in a channel is used to investigate turbulent transport processes. Detailed properties of the turbulent velocity field are presented. Three different transport processes are explored using this extensive data base. The first is the identification of the origin and fate of flow-oriented structures responsible for transporting momentum close to the wall. An important finding is that they regenerate themselves by a process that appears to be weakly dependent on the outer flow. This involves the enhancement of streamwise vorticity at the wall, of opposite sign, at a location where a stress-producing eddy lifts from the wall. Another area of exploration is the analysis of how small, dense particles move in a carrier fluid and deposit on a boundary. A Stokes drag force is used in the equation of motion for the aerosol and the particles are assumed to have no influence on the flow field. It is shown that these particles accumulate in the near wall region by turbophoresis and by free-flight. They deposit due to their own inertia. A new method for identifying free-flight particles is presented and a prediction of free-flight deposition is made using fluid velocity distributions. The third subject involves the effect of Prandtl number on the transport of heat in turbulent flow between a hot wall and a cold wall. The effects of Prandtl number on the turbulent diffusivity of heat and on the dissipation of temperature fluctuations are presented. A prediction of the Nusselt number based upon the Reynolds analogy, which relates the turbulent temperature field to the turbulent velocity field, is also presented.

Direct Numerical Simulation for Turbulent Reacting Flows

Direct Numerical Simulation for Turbulent Reacting Flows
Author: Thierry Baritaud
Publisher: Editions TECHNIP
Total Pages: 328
Release: 1996
Genre: Science
ISBN: 9782710806981

Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

The Lattice Boltzmann Method

The Lattice Boltzmann Method
Author: Timm Krüger
Publisher: Springer
Total Pages: 705
Release: 2016-11-07
Genre: Science
ISBN: 3319446495

This book is an introduction to the theory, practice, and implementation of the Lattice Boltzmann (LB) method, a powerful computational fluid dynamics method that is steadily gaining attention due to its simplicity, scalability, extensibility, and simple handling of complex geometries. The book contains chapters on the method's background, fundamental theory, advanced extensions, and implementation. To aid beginners, the most essential paragraphs in each chapter are highlighted, and the introductory chapters on various LB topics are front-loaded with special "in a nutshell" sections that condense the chapter's most important practical results. Together, these sections can be used to quickly get up and running with the method. Exercises are integrated throughout the text, and frequently asked questions about the method are dealt with in a special section at the beginning. In the book itself and through its web page, readers can find example codes showing how the LB method can be implemented efficiently on a variety of hardware platforms, including multi-core processors, clusters, and graphics processing units. Students and scientists learning and using the LB method will appreciate the wealth of clearly presented and structured information in this volume.

Simulation and Modeling of Turbulent Flows

Simulation and Modeling of Turbulent Flows
Author: Thomas B. Gatski
Publisher: Oxford University Press
Total Pages: 329
Release: 1996-07-11
Genre: Science
ISBN: 0195355563

This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

Hydrodynamic and Magnetohydrodynamic Turbulent Flows

Hydrodynamic and Magnetohydrodynamic Turbulent Flows
Author: A. Yoshizawa
Publisher: Springer Science & Business Media
Total Pages: 426
Release: 2013-03-14
Genre: Science
ISBN: 9401718105

TUrbulence modeling encounters mixed evaluation concerning its impor tance. In engineering flow, the Reynolds number is often very high, and the direct numerical simulation (DNS) based on the resolution of all spatial scales in a flow is beyond the capability of a computer available at present and in the foreseeable near future. The spatial scale of energetic parts of a turbulent flow is much larger than the energy dissipative counterpart, and they have large influence on the transport processes of momentum, heat, matters, etc. The primary subject of turbulence modeling is the proper es timate of these transport processes on the basis of a bold approximation to the energy-dissipation one. In the engineering community, the turbulence modeling is highly evaluated as a mathematical tool indispensable for the analysis of real-world turbulent flow. In the physics community, attention is paid to the study of small-scale components of turbulent flow linked with the energy-dissipation process, and much less interest is shown in the foregoing transport processes in real-world flow. This research tendency is closely related to the general belief that universal properties of turbulence can be found in small-scale phenomena. Such a study has really contributed much to the construction of statistical theoretical approaches to turbulence. The estrangement between the physics community and the turbulence modeling is further enhanced by the fact that the latter is founded on a weak theoretical basis, compared with the study of small-scale turbulence.

Numerical Simulation of Turbulent Flows and Noise Generation

Numerical Simulation of Turbulent Flows and Noise Generation
Author: Christophe Brun
Publisher: Springer Science & Business Media
Total Pages: 344
Release: 2009-03-07
Genre: Technology & Engineering
ISBN: 3540899561

Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Highly-resolved Numerical Simulations of Bed-load Transport in a Turbulent Open-channel Flow

Highly-resolved Numerical Simulations of Bed-load Transport in a Turbulent Open-channel Flow
Author: Bernhard Vowinckel
Publisher: Tudpress Verlag Der Wissenschaften Gmbh
Total Pages: 160
Release: 2015-03-27
Genre:
ISBN: 9783959080026

Phase-resolving Direct Numerical Simulations of bed-load transport in a horizontal turbulent open-channel flow at small relative submergence are presented. The thesis provides a detailed study addressing the impact of the choice of collision model on the scenario of bed-load transport and presents statistical tools to identify and describe the key-mechanisms governing the fluid-particle interaction. The Double-Averaging Methodology is applied for the first time to the situation of mobile rough beds. This methodology provides a framework to convolute the data in such a way that the most prominent flow features are well described by a handy set of double-averaged (in time and space) quantities. The thesis further provides a systematic study elucidating in detail the impact of the key-parameters mobility and sediment supply on the pattern formation of large-scale particle clusters. This is done using a very large computational domain to allow bed-forms to evolve with minimal spatial constraints. It is found that a low transport rate is linked to streamwise oriented ridges, while a large sediment supply results in large-scale clusters that propagate in streamwise direction. A detailed description of fluid quantities links the developed particle patterns to the enhancement of turbulence. The large domain allows for a large number of independent erosion events, such that conditional averaging provides a very clear description of the processes involved for incipient particle motion. Furthermore, the detection of moving particle clusters as well as the investigation of their surrounding flow field is performed by an analysis using a moving frame coordinate system.