Transition to College Math & Statistics Student Edition
Author | : HIRSCH |
Publisher | : McGraw-Hill Education |
Total Pages | : 728 |
Release | : 2015-01-01 |
Genre | : Mathematics |
ISBN | : 9780076626267 |
Download Transition To College Mathematics full books in PDF, epub, and Kindle. Read online free Transition To College Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : HIRSCH |
Publisher | : McGraw-Hill Education |
Total Pages | : 728 |
Release | : 2015-01-01 |
Genre | : Mathematics |
ISBN | : 9780076626267 |
Author | : William Johnston |
Publisher | : Oxford University Press |
Total Pages | : 766 |
Release | : 2009-07-27 |
Genre | : Mathematics |
ISBN | : 0199718660 |
A Transition to Advanced Mathematics: A Survey Course promotes the goals of a "bridge'' course in mathematics, helping to lead students from courses in the calculus sequence (and other courses where they solve problems that involve mathematical calculations) to theoretical upper-level mathematics courses (where they will have to prove theorems and grapple with mathematical abstractions). The text simultaneously promotes the goals of a ``survey'' course, describing the intriguing questions and insights fundamental to many diverse areas of mathematics, including Logic, Abstract Algebra, Number Theory, Real Analysis, Statistics, Graph Theory, and Complex Analysis. The main objective is "to bring about a deep change in the mathematical character of students -- how they think and their fundamental perspectives on the world of mathematics." This text promotes three major mathematical traits in a meaningful, transformative way: to develop an ability to communicate with precise language, to use mathematically sound reasoning, and to ask probing questions about mathematics. In short, we hope that working through A Transition to Advanced Mathematics encourages students to become mathematicians in the fullest sense of the word. A Transition to Advanced Mathematics has a number of distinctive features that enable this transformational experience. Embedded Questions and Reading Questions illustrate and explain fundamental concepts, allowing students to test their understanding of ideas independent of the exercise sets. The text has extensive, diverse Exercises Sets; with an average of 70 exercises at the end of section, as well as almost 3,000 distinct exercises. In addition, every chapter includes a section that explores an application of the theoretical ideas being studied. We have also interwoven embedded reflections on the history, culture, and philosophy of mathematics throughout the text.
Author | : Douglas Smith |
Publisher | : Cengage Learning |
Total Pages | : 416 |
Release | : 2010-06-01 |
Genre | : Mathematics |
ISBN | : 9780495562023 |
A TRANSITION TO ADVANCED MATHEMATICS helps students make the transition from calculus to more proofs-oriented mathematical study. The most successful text of its kind, the 7th edition continues to provide a firm foundation in major concepts needed for continued study and guides students to think and express themselves mathematically to analyze a situation, extract pertinent facts, and draw appropriate conclusions. The authors place continuous emphasis throughout on improving students' ability to read and write proofs, and on developing their critical awareness for spotting common errors in proofs. Concepts are clearly explained and supported with detailed examples, while abundant and diverse exercises provide thorough practice on both routine and more challenging problems. Students will come away with a solid intuition for the types of mathematical reasoning they'll need to apply in later courses and a better understanding of how mathematicians of all kinds approach and solve problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Author | : Edward Hurst |
Publisher | : Springer Science & Business Media |
Total Pages | : 347 |
Release | : 2009-01-08 |
Genre | : Mathematics |
ISBN | : 1848002904 |
Helps to ease the transition between school/college and university mathematics by (re)introducing readers to a range of topics that they will meet in the first year of a degree course in the mathematical sciences, refreshing their knowledge of basic techniques and focussing on areas that are often perceived as the most challenging. Each chapter starts with a "Test Yourself" section so that readers can monitor their progress and readily identify areas where their understanding is incomplete. A range of exercises, complete with full solutions, makes the book ideal for self-study.
Author | : Neil R. Nicholson |
Publisher | : CRC Press |
Total Pages | : 465 |
Release | : 2019-03-21 |
Genre | : Mathematics |
ISBN | : 0429522002 |
A Transition to Proof: An Introduction to Advanced Mathematics describes writing proofs as a creative process. There is a lot that goes into creating a mathematical proof before writing it. Ample discussion of how to figure out the "nuts and bolts'" of the proof takes place: thought processes, scratch work and ways to attack problems. Readers will learn not just how to write mathematics but also how to do mathematics. They will then learn to communicate mathematics effectively. The text emphasizes the creativity, intuition, and correct mathematical exposition as it prepares students for courses beyond the calculus sequence. The author urges readers to work to define their mathematical voices. This is done with style tips and strict "mathematical do’s and don’ts", which are presented in eye-catching "text-boxes" throughout the text. The end result enables readers to fully understand the fundamentals of proof. Features: The text is aimed at transition courses preparing students to take analysis Promotes creativity, intuition, and accuracy in exposition The language of proof is established in the first two chapters, which cover logic and set theory Includes chapters on cardinality and introductory topology
Author | : Ghislaine Gueudet |
Publisher | : Springer |
Total Pages | : 44 |
Release | : 2016-07-07 |
Genre | : Education |
ISBN | : 3319316222 |
This book examines the kinds of transitions that have been studied in mathematics education research. It defines transition as a process of change, and describes learning in an educational context as a transition process. The book focuses on research in the area of mathematics education, and starts out with a literature review, describing the epistemological, cognitive, institutional and sociocultural perspectives on transition. It then looks at the research questions posed in the studies and their link with transition, and examines the theoretical approaches and methods used. It explores whether the research conducted has led to the identification of continuous processes, successive steps, or discontinuities. It answers the question of whether there are difficulties attached to the discontinuities identified, and if so, whether the research proposes means to reduce the gap – to create a transition. The book concludes with directions for future research on transitions in mathematics education.
Author | : Gove Effinger |
Publisher | : CRC Press |
Total Pages | : 260 |
Release | : 2019-11-05 |
Genre | : Mathematics |
ISBN | : 1000702278 |
An Elementary Transition to Abstract Mathematics will help students move from introductory courses to those where rigor and proof play a much greater role. The text is organized into five basic parts: the first looks back on selected topics from pre-calculus and calculus, treating them more rigorously, and it covers various proof techniques; the second part covers induction, sets, functions, cardinality, complex numbers, permutations, and matrices; the third part introduces basic number theory including applications to cryptography; the fourth part introduces key objects from abstract algebra; and the final part focuses on polynomials. Features: The material is presented in many short chapters, so that one concept at a time can be absorbed by the student. Two "looking back" chapters at the outset (pre-calculus and calculus) are designed to start the student’s transition by working with familiar concepts. Many examples of every concept are given to make the material as concrete as possible and to emphasize the importance of searching for patterns. A conversational writing style is employed throughout in an effort to encourage active learning on the part of the student.
Author | : Tony Barnard |
Publisher | : CRC Press |
Total Pages | : 286 |
Release | : 2016-12-19 |
Genre | : Mathematics |
ISBN | : 1315405768 |
Discovering Group Theory: A Transition to Advanced Mathematics presents the usual material that is found in a first course on groups and then does a bit more. The book is intended for students who find the kind of reasoning in abstract mathematics courses unfamiliar and need extra support in this transition to advanced mathematics. The book gives a number of examples of groups and subgroups, including permutation groups, dihedral groups, and groups of integer residue classes. The book goes on to study cosets and finishes with the first isomorphism theorem. Very little is assumed as background knowledge on the part of the reader. Some facility in algebraic manipulation is required, and a working knowledge of some of the properties of integers, such as knowing how to factorize integers into prime factors. The book aims to help students with the transition from concrete to abstract mathematical thinking.
Author | : Ethan D. Bloch |
Publisher | : Springer Science & Business Media |
Total Pages | : 434 |
Release | : 2013-12-01 |
Genre | : Mathematics |
ISBN | : 1461221307 |
The aim of this book is to help students write mathematics better. Throughout it are large exercise sets well-integrated with the text and varying appropriately from easy to hard. Basic issues are treated, and attention is given to small issues like not placing a mathematical symbol directly after a punctuation mark. And it provides many examples of what students should think and what they should write and how these two are often not the same.
Author | : Keith J. Devlin |
Publisher | : |
Total Pages | : 0 |
Release | : 2012 |
Genre | : Mathematics |
ISBN | : 9780615653631 |
"Mathematical thinking is not the same as 'doing math'--unless you are a professional mathematician. For most people, 'doing math' means the application of procedures and symbolic manipulations. Mathematical thinking, in contrast, is what the name reflects, a way of thinking about things in the world that humans have developed over three thousand years. It does not have to be about mathematics at all, which means that many people can benefit from learning this powerful way of thinking, not just mathematicians and scientists."--Back cover.