Transients of Modern Power Electronics

Transients of Modern Power Electronics
Author: Hua Bai
Publisher: John Wiley & Sons
Total Pages: 374
Release: 2011-07-05
Genre: Technology & Engineering
ISBN: 1119972760

In high power, high voltage electronics systems, a strategy to manage short timescale energy imbalances is fundamental to the system reliability. Without a theoretical framework, harmful local convergence of energy can affect the dynamic process of transformation, transmission, and storage which create an unreliable system. With an original approach that encourages understanding of both macroscopic and microscopic factors, the authors offer a solution. They demonstrate the essential theory and methodology for the design, modeling and prototyping of modern power electronics converters to create highly effective systems. Current applications such as renewable energy systems and hybrid electric vehicles are discussed in detail by the authors. Key features: offers a logical guide that is widely applicable to power electronics across power supplies, renewable energy systems, and many other areas analyses the short-scale (nano-micro second) transient phenomena and the transient processes in nearly all major timescales, from device switching processes at the nanoscale level, to thermal and mechanical processes at second level explores transient causes and shows how to correct them by changing the control algorithm or peripheral circuit includes two case studies on power electronics in hybrid electric vehicles and renewable energy systems Practitioners in major power electronic companies will benefit from this reference, especially design engineers aiming for optimal system performance. It will also be of value to faculty staff and graduate students specializing in power electronics within academia.

Introduction to Modern Power Electronics

Introduction to Modern Power Electronics
Author: Andrzej M. Trzynadlowski
Publisher: John Wiley & Sons
Total Pages: 472
Release: 2015-10-19
Genre: Technology & Engineering
ISBN: 1119003229

Provides comprehensive coverage of the basic principles and methods of electric power conversion and the latest developments in the field This book constitutes a comprehensive overview of the modern power electronics. Various semiconductor power switches are described, complementary components and systems are presented, and power electronic converters that process power for a variety of applications are explained in detail. This third edition updates all chapters, including new concepts in modern power electronics. New to this edition is extended coverage of matrix converters, multilevel inverters, and applications of the Z-source in cascaded power converters. The book is accompanied by a website hosting an instructor’s manual, a PowerPoint presentation, and a set of PSpice files for simulation of a variety of power electronic converters. Introduction to Modern Power Electronics, Third Edition: Discusses power conversion types: ac-to-dc, ac-to-ac, dc-to-dc, and dc-to-ac Reviews advanced control methods used in today’s power electronic converters Includes an extensive body of examples, exercises, computer assignments, and simulations Introduction to Modern Power Electronics, Third Edition is written for undergraduate and graduate engineering students interested in modern power electronics and renewable energy systems. The book can also serve as a reference tool for practicing electrical and industrial engineers.

Modern Power Electronic Devices

Modern Power Electronic Devices
Author: Francesco Iannuzzo
Publisher: Energy Engineering
Total Pages: 504
Release: 2020-10
Genre: Technology & Engineering
ISBN: 9781785619175

Power devices are key to modern power systems, performing functions such as inverting and changing voltages, buffering and switching. Following a device-centric approach, this book covers power electronic applications, semiconductor physics, materials science, application engineering, and key technologies such as MOSFET, IGBT and WBG.

Electromagnetic Transients of Power Electronics Systems

Electromagnetic Transients of Power Electronics Systems
Author: Zhengming Zhao
Publisher: Springer
Total Pages: 476
Release: 2019-02-20
Genre: Technology & Engineering
ISBN: 9811088128

This book discusses topics related to power electronics, especially electromagnetic transient analysis and control of high-power electronics conversion. It focuses on the re-evaluation of power electronics, transient analysis and modeling, device-based system-safe operating area, and energy balance-based control methods, and presenting, for the first time, numerous experimental results for the transient process of various real-world converters. The book systematically presents both theoretical analysis and practical applications. The first chapter discusses the structure and attributes of power electronics systems, highlighting the analysis and synthesis, while the second chapter explores the transient process and modeling for power electronics systems. The transient features of power devices at switching-on/off, transient conversion circuit with stray parameters and device-based system-safe operating area are described in the subsequent three chapters. The book also examines the measurement of transient processes, electromagnetic pulses and their series, as well as high-performance, closed-loop control, and expounds the basic principles and method of the energy-balanced control strategy. Lastly, it introduces the applications of transient analysis of typical power electronics systems. The book is valuable as a textbook for college students, and as a reference resource for electrical engineers as well as anyone working in the field of high-power electronics system.

Electrical Transients in Power Systems

Electrical Transients in Power Systems
Author: Allan Greenwood
Publisher: Wiley-Interscience
Total Pages: 778
Release: 1991-04-18
Genre: Technology & Engineering
ISBN:

The principles of the First Edition--to teach students and engineers the fundamentals of electrical transients and equip them with the skills to recognize and solve transient problems in power networks and components--also guide this Second Edition. While the text continues to stress the physical aspects of the phenomena involved in these problems, it also broadens and updates the computational treatment of transients. Necessarily, two new chapters address the subject of modeling and models for most types of equipment are discussed. The adequacy of the models, their validation and the relationship between model and the physical entity it represents are also examined. There are now chapters devoted entirely to isolation coordination and protection, reflecting the revolution that metal oxide surge arresters have caused in the power industry. Features additional and more complete illustrative material--figures, diagrams and worked examples. An entirely new chapter of case studies demonstrates modeling and computational techniques as they have been applied by engineers to specific problems.

Modern Power Electronics

Modern Power Electronics
Author: PC Sen
Publisher: S. Chand Publishing
Total Pages: 976
Release: 2005-03
Genre: Technology & Engineering
ISBN: 9788121924252

I May observed that recent developments in power electronics have proceeded in two different directions,namely,low power range power supplies using high frequency PWM technique and medium to high power range energy control systems to serve specific Purpose.

Power System Transients

Power System Transients
Author: Juan A. Martinez-Velasco
Publisher: CRC Press
Total Pages: 644
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 1420065300

Despite the powerful numerical techniques and graphical user interfaces available in present software tools for power system transients, a lack of reliable tests and conversion procedures generally makes determination of parameters the most challenging part of creating a model. Illustrates Parameter Determination for Real-World Applications Geared toward both students and professionals with at least some basic knowledge of electromagnetic transient analysis, Power System Transients: Parameter Determination summarizes current procedures and techniques for the determination of transient parameters for six basic power components: overhead line, insulated cable, transformer, synchronous machine, surge arrester, and circuit breaker. An expansion on papers published in the IEEE Transactions on Power Delivery, this text helps those using transient simulation tools (e.g., EMTP-like tools) to select the optimal determination method for their particular model, and it addresses commonly encountered problems, including: Lack of information Testing setups and measurements that are not recognized in international standards Insufficient studies to validate models, mainly those used in high-frequency transients Current built-in models that do not cover all requirements Illustrated with case studies, this book provides modeling guidelines for the selection of adequate representations for main components. It discusses how to collect the information needed to obtain model parameters and also reviews procedures for deriving them. Appendices summarize updated techniques for identifying linear systems from frequency responses and review capabilities and limitations of simulation tools. Emphasizing standards, this book is a clear and concise presentation of key aspects in creating an adequate and reliable transient model.

Power Systems Electromagnetic Transients Simulation

Power Systems Electromagnetic Transients Simulation
Author: Neville Watson
Publisher: IET
Total Pages: 449
Release: 2003
Genre: Science
ISBN: 0852961065

Electromagnetic transients simulation (EMTS) has become a universal tool for the analysis of power system electromagnetic transients in the range of nanoseconds to seconds. This book provides a thorough review of EMTS and many simple examples are included to clarify difficult concepts. This book will be of particular value to advanced engineering students and practising power systems engineers.

Real-Time Simulation Technology for Modern Power Electronics

Real-Time Simulation Technology for Modern Power Electronics
Author: Hao Bai
Publisher: Elsevier
Total Pages: 320
Release: 2023-05-19
Genre: Technology & Engineering
ISBN: 032399542X

Real-Time Simulation Technology for Modern Power Electronics provides an invaluable foundation and state-of-the-art review on the most advanced implementations of real-time simulation as it appears poised to revolutionize the modeling of power electronics. The book opens with a discussion of power electronics device physic modeling, component modeling, and power converter modeling before addressing numerical methods to solve converter model, emphasizing speed and accuracy. It discusses both CPU-based and FPGA-based real-time implementations and provides an extensive review of current applications, including hardware-in-the-loop and its case studies in the micro-grid and electric vehicle applications. The book closes with a review of the near and long-term outlooks for the evolving technology. Collectively, the work provides a systematic resource for students, researchers, and engineers in the electrical engineering and other closely related fields. - Introduces the theoretical building blocks of real-time power electronic simulation through advanced modern implementations - Includes modern case studies and implementations across diverse applications, including electric vehicle component testing and microgrid controller testing - Discusses FPGA-based real-time simulation techniques complete with illustrative examples, comparisons with CPU-based simulation, computational performance and co-simulation architectures

Transient Analysis of Power Systems

Transient Analysis of Power Systems
Author: Juan A. Martinez-Velasco
Publisher: John Wiley & Sons
Total Pages: 661
Release: 2015-01-27
Genre: Technology & Engineering
ISBN: 1118352343

The simulation of electromagnetic transients is a mature field that plays an important role in the design of modern power systems. Since the first steps in this field to date, a significant effort has been dedicated to the development of new techniques and more powerful software tools. Sophisticated models, complex solution techniques and powerful simulation tools have been developed to perform studies that are of supreme importance in the design of modern power systems. The first developments of transients tools were mostly aimed at calculating over-voltages. Presently, these tools are applied to a myriad of studies (e.g. FACTS and Custom Power applications, protective relay performance, simulation of smart grids) for which detailed models and fast solution methods can be of paramount importance. This book provides a basic understanding of the main aspects to be considered when performing electromagnetic transients studies, detailing the main applications of present electromagnetic transients (EMT) tools, and discusses new developments for enhanced simulation capability. Key features: Provides up-to-date information on solution techniques and software capabilities for simulation of electromagnetic transients. Covers key aspects that can expand the capabilities of a transient software tool (e.g. interfacing techniques) or speed up transients simulation (e.g. dynamic model averaging). Applies EMT-type tools to a wide spectrum of studies that range from fast electromagnetic transients to slow electromechanical transients, including power electronic applications, distributed energy resources and protection systems. Illustrates the application of EMT tools to the analysis and simulation of smart grids.