Totally Positive Matrices
Download Totally Positive Matrices full books in PDF, epub, and Kindle. Read online free Totally Positive Matrices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Abraham Berman |
Publisher | : World Scientific |
Total Pages | : 222 |
Release | : 2003 |
Genre | : Mathematics |
ISBN | : 9789812795212 |
A real matrix is positive semidefinite if it can be decomposed as A = BBOC . In some applications the matrix B has to be elementwise nonnegative. If such a matrix exists, A is called completely positive. The smallest number of columns of a nonnegative matrix B such that A = BBOC is known as the cp- rank of A . This invaluable book focuses on necessary conditions and sufficient conditions for complete positivity, as well as bounds for the cp- rank. The methods are combinatorial, geometric and algebraic. The required background on nonnegative matrices, cones, graphs and Schur complements is outlined. Contents: Preliminaries: Matrix Theoretic Background; Positive Semidefinite Matrices; Nonnegative Matrices and M -Matrices; Schur Complements; Graphs; Convex Cones; The PSD Completion Problem; Complete Positivity: Definition and Basic Properties; Cones of Completely Positive Matrices; Small Matrices; Complete Positivity and the Comparison Matrix; Completely Positive Graphs; Completely Positive Matrices Whose Graphs are Not Completely Positive; Square Factorizations; Functions of Completely Positive Matrices; The CP Completion Problem; CP Rank: Definition and Basic Results; Completely Positive Matrices of a Given Rank; Completely Positive Matrices of a Given Order; When is the CP-Rank Equal to the Rank?. Readership: Upper level undergraduates, graduate students, academics and researchers interested in matrix theory."
Author | : Allan Pinkus |
Publisher | : Cambridge University Press |
Total Pages | : 195 |
Release | : 2010 |
Genre | : Language Arts & Disciplines |
ISBN | : 0521194083 |
This account of totally positive matrices treats their central properties with full proofs and a complete bibliography.
Author | : Shaun M. Fallat |
Publisher | : Princeton University Press |
Total Pages | : 265 |
Release | : 2011-04-11 |
Genre | : Mathematics |
ISBN | : 1400839017 |
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow development, bidiagonal factorizations, along with determinants, now provide the dominant methodology for understanding total nonnegativity. The remainder of the book treats important topics, such as recognition of totally nonnegative or totally positive matrices, variation diminution, spectral properties, determinantal inequalities, Hadamard products, and completion problems associated with totally nonnegative or totally positive matrices. The book also contains sample applications, an up-to-date bibliography, a glossary of all symbols used, an index, and related references.
Author | : Rajendra Bhatia |
Publisher | : Princeton University Press |
Total Pages | : 264 |
Release | : 2015-09-01 |
Genre | : Mathematics |
ISBN | : 0691168253 |
This book represents the first synthesis of the considerable body of new research into positive definite matrices. These matrices play the same role in noncommutative analysis as positive real numbers do in classical analysis. They have theoretical and computational uses across a broad spectrum of disciplines, including calculus, electrical engineering, statistics, physics, numerical analysis, quantum information theory, and geometry. Through detailed explanations and an authoritative and inspiring writing style, Rajendra Bhatia carefully develops general techniques that have wide applications in the study of such matrices. Bhatia introduces several key topics in functional analysis, operator theory, harmonic analysis, and differential geometry--all built around the central theme of positive definite matrices. He discusses positive and completely positive linear maps, and presents major theorems with simple and direct proofs. He examines matrix means and their applications, and shows how to use positive definite functions to derive operator inequalities that he and others proved in recent years. He guides the reader through the differential geometry of the manifold of positive definite matrices, and explains recent work on the geometric mean of several matrices. Positive Definite Matrices is an informative and useful reference book for mathematicians and other researchers and practitioners. The numerous exercises and notes at the end of each chapter also make it the ideal textbook for graduate-level courses.
Author | : Charles R. Johnson |
Publisher | : Cambridge University Press |
Total Pages | : 223 |
Release | : 2020-10 |
Genre | : Mathematics |
ISBN | : 1108478719 |
This comprehensive reference, for mathematical, engineering and social scientists, covers matrix positivity classes and their applications.
Author | : Naomi Shaked-monderer |
Publisher | : World Scientific |
Total Pages | : 562 |
Release | : 2021-02-09 |
Genre | : Mathematics |
ISBN | : 9811204365 |
This book is an updated and extended version of Completely Positive Matrices (Abraham Berman and Naomi Shaked-Monderer, World Scientific 2003). It contains new sections on the cone of copositive matrices, which is the dual of the cone of completely positive matrices, and new results on both copositive matrices and completely positive matrices.The book is an up to date comprehensive resource for researchers in Matrix Theory and Optimization. It can also serve as a textbook for an advanced undergraduate or graduate course.
Author | : András Bátkai |
Publisher | : Birkhäuser |
Total Pages | : 366 |
Release | : 2017-02-13 |
Genre | : Mathematics |
ISBN | : 3319428136 |
This book gives a gentle but up-to-date introduction into the theory of operator semigroups (or linear dynamical systems), which can be used with great success to describe the dynamics of complicated phenomena arising in many applications. Positivity is a property which naturally appears in physical, chemical, biological or economic processes. It adds a beautiful and far reaching mathematical structure to the dynamical systems and operators describing these processes. In the first part, the finite dimensional theory in a coordinate-free way is developed, which is difficult to find in literature. This is a good opportunity to present the main ideas of the Perron-Frobenius theory in a way which can be used in the infinite dimensional situation. Applications to graph matrices, age structured population models and economic models are discussed. The infinite dimensional theory of positive operator semigroups with their spectral and asymptotic theory is developed in the second part. Recent applications illustrate the theory, like population equations, neutron transport theory, delay equations or flows in networks. Each chapter is accompanied by a large set of exercises. An up-to-date bibliography and a detailed subject index help the interested reader. The book is intended primarily for graduate and master students. The finite dimensional part, however, can be followed by an advanced bachelor with a solid knowledge of linear algebra and calculus.
Author | : Jean-Luc Brylinski |
Publisher | : Springer Science & Business Media |
Total Pages | : 629 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 1461202612 |
This volume, dedicated to Bertram Kostant on the occasion of his 65th birthday, is a collection of 22 invited papers by leading mathematicians working in Lie theory, geometry, algebra, and mathematical physics. Kostant’s fundamental work in all these areas has provided deep new insights and connections, and has created new fields of research. The papers gathered here present original research articles as well as expository papers, broadly reflecting the range of Kostant’s work.
Author | : Mariano Gasca |
Publisher | : Springer |
Total Pages | : 518 |
Release | : 1996-03-31 |
Genre | : Mathematics |
ISBN | : 079233924X |
This volume contains both invited lectures and contributed talks presented at the meeting on Total Positivity and its Applications held at the guest house of the University of Zaragoza in Jaca, Spain, during the week of September 26-30, 1994. There were present at the meeting almost fifty researchers from fourteen countries. Their interest in thesubject of Total Positivity made for a stimulating and fruitful exchange of scientific information. Interest to participate in the meeting exceeded our expectations. Regrettably, budgetary constraints forced us to restriet the number of attendees. Professor S. Karlin, of Stanford University, who planned to attend the meeting had to cancel his participation at the last moment. Nonetheless, his almost universal spiritual presence energized and inspired all of us in Jaca. More than anyone, he influenced the content, style and quality of the presentations given at the meeting. Every article in these Proceedings (except some by Karlin hirnself) references his influential treatise Total Positivity, Volume I, Stanford University Press, 1968. Since its appearance, this book has intrigued and inspired the minds of many researchers (one of us, in his formative years, read the galley proofs and the other of us first doubted its value but then later became its totally committed disciple). All of us present at the meeting encourage Professor Karlin to return to the task of completing the anxiously awaited Volume 11 of Total Positivity.
Author | : Feliks Ruvimovich Gantmakher |
Publisher | : American Mathematical Soc. |
Total Pages | : 424 |
Release | : 1961 |
Genre | : Technology & Engineering |
ISBN | : |
The exposition is self-contained. The first chapter presents all necessary results (with proofs) on the theory of matrices which are not included in a standard linear algebra course. The only prerequisite in addition to standard linear algebra is the theory of linear integral equations used in Chapter 5. The book is suitable for graduate students, research mathematicians and engineers interested in ordinary differential equations, integral equations, and theirapplications.