Topological Methods in Chemistry

Topological Methods in Chemistry
Author: Richard E. Merrifield
Publisher: Wiley-Interscience
Total Pages: 266
Release: 1989-03-20
Genre: Mathematics
ISBN:

Introduces a new method and language, based on finite topological spaces, for investigating molecular structure. Eschews the ``theorem-proof-remarks'' format of mathematics in favor of a more readable style commonly used in physical science. Part I develops the mathematical machinery which can serve as an analytical tool to investigate nonmetric aspects of chemical structure. Specific topics covered include set theory, lattices, graph theory, connectivity, classification of spaces, combinatorics, and functions and continuity. Part II explains the application of the above concepts to molecular structure. Chapters cover the bond topology, the graph topology, duplex spaces, and the topology of chemical reactions. Eight appendixes cover ancillary topics.

Topology in Chemistry

Topology in Chemistry
Author: D H Rouvray
Publisher: Elsevier
Total Pages: 400
Release: 2002-04-01
Genre: Science
ISBN: 0857099612

This volume addresses a number of topological themes of direct relevance to chemists. Topological concepts are now regularly applied in wide areas of chemistry including molecular engineering and design, chemical toxicology, the study of molecular shape, crystal and surface structures, chemical bonding, macromolecular species such as polymers and DNA, and environmental chemistry. Currently, the design and synthesis of new drugs and agrochemicals are of especial importance. The book's prime focus is on the role played by topological indices in the description and characterisation of molecular species. The Wiener index along with a variety of other major topological indices, are discussed with particular reference to the powerful and much used connectivity indices. In this book an international team of leading experts review their respective fields and present their findings.The considerable benefits offered by topological indices in the investigation of chemical problems in science, medicine, and industry are highlighted. The volume records proceedings of the Harry Wiener Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001, and serves as a fitting tribute to the chemical contributions of the late Harry Wiener. - Focuses on the role played by topological indices in the description and characterisation of molecular species - Records the proceedings of the Harry Weiner Memorial Conference on the Role of Topology in Chemistry, held at the University of Georgia in March 2001 - Along with a variety of other major topological indices, the Wiener index is discussed with particular reference to the powerful and much-used connectivity indices

Applications of Topological Methods in Molecular Chemistry

Applications of Topological Methods in Molecular Chemistry
Author: Remi Chauvin
Publisher: Springer
Total Pages: 582
Release: 2016-04-19
Genre: Science
ISBN: 3319290223

This is the first edited volume that features two important frameworks, Hückel and quantum chemical topological analyses. The contributors, which include an array of academics of international distinction, describe recent applications of such topological methods to various fields and topics that provide the reader with the current state-of-the-art and give a flavour of the wide range of their potentialities.

From Chemical Topology to Three-Dimensional Geometry

From Chemical Topology to Three-Dimensional Geometry
Author: Alexandru T. Balaban
Publisher: Springer Science & Business Media
Total Pages: 436
Release: 2006-04-11
Genre: Science
ISBN: 0306469073

Even high-speed supercomputers cannot easily convert traditional two-dimensional databases from chemical topology into the three-dimensional ones demanded by today's chemists, particularly those working in drug design. This fascinating volume resolves this problem by positing mathematical and topological models which greatly expand the capabilities of chemical graph theory. The authors examine QSAR and molecular similarity studies, the relationship between the sequence of amino acids and the less familiar secondary and tertiary protein structures, and new topological methods.

Chemical Topology

Chemical Topology
Author: D Bonchev
Publisher: CRC Press
Total Pages: 354
Release: 1999-04-23
Genre: Science
ISBN: 9789056991746

Topology is becoming increasingly important in chemistry because of its rapidly growing number of applications. Here, its many uses are reviewed and the authors anticipate what future developments might bring. This work shows how significant new insights can be gained by representing molecular species as topological structures known as topographs. The text explores carbon structures, establishing how the stability of fullerene species can be accounted for and also predicting which fullerenes will be most stable. It is pointed out that molecular topology, rather than molecular geometry, characterizes molecular shape and various tools for shape characterization are described. Several of the fascinating ideas that arise from regarding topology as a unifying principle in chemical bonding theory are discussed, and in particular, the novel concept of the molecular topoid is shown to have numerous uses. The topological description of polymers is examined and the reader is gently guided through the realms of branched and tangled polymers. Overall, this work outlines the fact that topology is not only a theoretical discipline but also one that has practical applications and high relevance to the whole domain of chemistry.

Shape in Chemistry

Shape in Chemistry
Author: Paul G. Mezey
Publisher: Wiley-VCH
Total Pages: 224
Release: 1993-08-26
Genre: Science
ISBN: 9780471187417

'Shape in Chemistry' looks at molecular shape from a unique perspective: It introduces the reader to the topological concepts and methods of precise shape characterization that are applicable for direct, non-visual description and analysis of general molecular shapes. The author provides a pictorial introduction to all the topological tools necessary for the subjects discussed. Mathematical description is also provided at an easily comprehensible level. New concepts are introduced beginning at the familiar level of stereochemistry and lead on to more advanced topological shape analysis methods. The structure of the book reflects the author's desire to bring the reader to an early appreciation of the power of topology in chemistry. After a brief review of the quantum chemical concept, the author compares the merits of visual, computer graphics methods and nonvisual, algorithmic shape analysis methods. The book ends with the concepts of approximate symmetry and various generalizations of symmetry. 'Shape in Chemistry' is surely destined to become standard reading in the field. It presents a valuable addition to the literature on shape and modeling of molecules for non-specialists organic, physical and medical chemists, researchers in various aspects of QSAR and pharmacological drug design and advanced undergraduate and graduate students.

Graph Theoretical Approaches to Chemical Reactivity

Graph Theoretical Approaches to Chemical Reactivity
Author: Danail D. Bonchev
Publisher: Springer Science & Business Media
Total Pages: 291
Release: 2012-12-06
Genre: Science
ISBN: 9401112029

The progress in computer technology during the last 10-15 years has enabled the performance of ever more precise quantum mechanical calculations related to structure and interactions of chemical compounds. However, the qualitative models relating electronic structure to molecular geometry have not progressed at the same pace. There is a continuing need in chemistry for simple concepts and qualitatively clear pictures that are also quantitatively comparable to ab initio quantum chemical calculations. Topological methods and, more specifically, graph theory as a fixed-point topology, provide in principle a chance to fill this gap. With its more than 100 years of applications to chemistry, graph theory has proven to be of vital importance as the most natural language of chemistry. The explosive development of chemical graph theory during the last 20 years has increasingly overlapped with quantum chemistry. Besides contributing to the solution of various problems in theoretical chemistry, this development indicates that topology is an underlying principle that explains the success of quantum mechanics and goes beyond it, thus promising to bear more fruit in the future.

Applications of Graph Theory and Topology in Inorganic Cluster and Coordination Chemistry

Applications of Graph Theory and Topology in Inorganic Cluster and Coordination Chemistry
Author: R. Bruce King
Publisher: CRC Press
Total Pages: 250
Release: 1992-12-01
Genre: Science
ISBN: 9780849342981

Applications of Graph Theory and Topology in Inorganic Cluster and Coordination Chemistry is a text-reference that provides inorganic chemists with a rudimentary knowledge of topology, graph theory, and related mathematical disciplines. The book emphasizes the application of these topics to metal clusters and coordination compounds. The book's initial chapters present background information in topology, graph theory, and group theory, explaining how these topics relate to the properties of atomic orbitals and are applied to coordination polyhedra. Subsequent chapters apply these ideas to the structure and chemical bonding in diverse types of inorganic compounds, including boron cages, metal clusters, solid state materials, metal oxide derivatives, superconductors, icosahedral phases, and carbon cages (fullerenes). The book's final chapter introduces the application of topology and graph theory for studying the dynamics of rearrangements in coordination and cluster polyhedra.

Topological Polymer Chemistry

Topological Polymer Chemistry
Author: Yasuyuki Tezuka
Publisher: World Scientific
Total Pages: 365
Release: 2013
Genre: Science
ISBN: 9814401285

There are examples aplenty in the macroscopic world that demonstrate the form of objects directing their functions and properties. On the other hand, the fabrication of extremely small objects having precisely defined structures has only recently become an attractive challenge, which is now opening the door to nanoscience and nanotechnology.In the field of synthetic polymer chemistry, a number of critical breakthroughs have been achieved during the first decade of this century to produce an important class of polymers having a variety of cyclic and multicyclic topologies. These developments now offer unique opportunities in polymer materials design to create unprecedented properties and functions simply based on the form, i.e. topology, of polymer molecules.In this book on topological polymer chemistry, the important developments in this growing area will be collected for the first time, with particular emphasis on new conceptual insights for polymer chemistry and polymer materials. The book will systematically review topological polymer chemistry from basic aspects to practice, and give a broad overview of cyclic polymers covering new synthesis, structure characterization, basic properties/functions and the eventual applications.

Molecular Topology

Molecular Topology
Author: Mircea V. Diudea
Publisher: Nova Biomedical Books
Total Pages: 350
Release: 2001
Genre: Mathematics
ISBN:

Most, yet not all, chemical substances consist of molecules. The fact that molecules have a 'structure' is known since the middle of the 19th century. Since then, one of the principal goals of chemistry is to establish the relationships between the chemical and physical properties of substance and the structure of the corresponding molecules. Countless results along these lines have been obtained along these lines and presented in different publications in this field. One group uses so-called topological indices. About 20 years ago, there were dozens of topological indices, but only a few with noteworthy chemical applications. Over time, their numbers have increased enormously. At this moment here is no theory that could serve as a reliable guide for solving this problem. This book is aimed at giving a reasonable comprehensive survey of the present, fin de siècle, state of art theory and practice of topological indices.