Topics In Low Dimensional Topology In Honor Of Steve Armentrout Proceedings Of The Conference On Low Dimensional Topology
Download Topics In Low Dimensional Topology In Honor Of Steve Armentrout Proceedings Of The Conference On Low Dimensional Topology full books in PDF, epub, and Kindle. Read online free Topics In Low Dimensional Topology In Honor Of Steve Armentrout Proceedings Of The Conference On Low Dimensional Topology ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Augustin Banyaga |
Publisher | : World Scientific |
Total Pages | : 136 |
Release | : 1999-10-15 |
Genre | : |
ISBN | : 9814543438 |
Recent success with the four-dimensional Poincaré conjecture has revived interest in low-dimensional topology, especially the three-dimensional Poincaré conjecture and other aspects of the problems of classifying three-dimensional manifolds. These problems have a driving force, and have generated a great body of research, as well as insight.The main topics treated in this book include a paper by V Poenaru on the Poincaré conjecture and its ramifications, giving an insight into the herculean work of the author on the subject. Steve Armentrout's paper on “Bing's dogbone space” belongs to the topics in three-dimensional topology motivated by the Poincaré conjecture. S Singh gives a nice synthesis of Armentrout's work. Also included in the volume are shorter original papers, dealing with somewhat different aspects of geometry, and dedicated to Armentrout by his colleagues — Augustin Banyaga (and Jean-Pierre Ezin), David Hurtubise, Hossein Movahedi-Lankarani and Robert Wells.
Author | : Augustin Banyaga |
Publisher | : World Scientific Publishing Company Incorporated |
Total Pages | : 124 |
Release | : 1999 |
Genre | : Mathematics |
ISBN | : 9789810240509 |
Recent success with the four-dimensional Poincare conjecture has revived interest in low-dimensional topology, especially the three-dimensional Poincare conjecture and other aspects of the problems of classifying three-dimensional manifolds. These problems have a driving force, and have generated a great body of research, as well as insight. The main topics treated in this book include a paper by V Poenaru on the Poincare conjecture and its ramifications, giving an insight into the herculean work of the author on the subject. Steve Armentrout's paper on "Bing's dogbone space" belongs to the topics in three-dimensional topology motivated by the Poincare conjecture. S Singh gives a nice synthesis of Armentrout's work. Also included in the volume are shorter original papers, dealing with somewhat different aspects of geometry, and dedicated to Armentrout by his colleagues -- Augustin Banyaga (and Jean-Pierre Ezin), David Hurtubise, Hossein Movahedi-Lankarani and Robert Wells.
Author | : Augustin Banyaga |
Publisher | : |
Total Pages | : 124 |
Release | : 1999 |
Genre | : |
ISBN | : |
Author | : Mikhail Lyubich |
Publisher | : American Mathematical Soc. |
Total Pages | : 443 |
Release | : 2005 |
Genre | : Mathematics |
ISBN | : 0821836668 |
The Stony Brook Conference, "Graphs and Patterns in Mathematics and Theoretical Physics", was dedicated to Dennis Sullivan in honor of his sixtieth birthday. The event's scientific content, which was suggested by Sullivan, was largely based on mini-courses and survey lectures. The main idea was to help researchers and graduate students in mathematics and theoretical physics who encounter graphs in their research to overcome conceptual barriers. The collection begins with Sullivan's paper, "Sigma models and string topology," which describes a background algebraic structure for the sigma model based on algebraic topology and transversality. Other contributions to the volume were organized into five sections: Feynman Diagrams, Algebraic Structures, Manifolds: Invariants and Mirror Symmetry, Combinatorial Aspects of Dynamics, and Physics. These sections, along with more research-oriented articles, contain the following surveys: "Feynman diagrams for pedestrians and mathematicians" by M. Polyak, "Notes on universal algebra" by A. Voronov, "Unimodal maps and hierarchical models" by M. Yampolsky, and "Quantum geometry in action: big bang and black holes" by A. Ashtekar. This comprehensive volume is suitable for graduate students and research mathematicians interested in graph theory and its applications in mathematics and physics.
Author | : |
Publisher | : |
Total Pages | : 1092 |
Release | : 2002 |
Genre | : Mathematics |
ISBN | : |
Author | : |
Publisher | : |
Total Pages | : 712 |
Release | : 2000 |
Genre | : Festschriften |
ISBN | : |
Author | : Dennis P. Sullivan |
Publisher | : Springer |
Total Pages | : 286 |
Release | : 2009-09-03 |
Genre | : Mathematics |
ISBN | : 9789048103508 |
The seminal ‘MIT notes’ of Dennis Sullivan were issued in June 1970 and were widely circulated at the time. The notes had a - jor in?uence on the development of both algebraic and geometric topology, pioneering the localization and completion of spaces in homotopy theory, including p-local, pro?nite and rational homotopy theory, le- ing to the solution of the Adams conjecture on the relationship between vector bundles and spherical ?brations, the formulation of the ‘Sullivan conjecture’ on the contractibility of the space of maps from the classifying space of a ?nite group to a ?nite dimensional CW complex, theactionoftheGalois groupoverQofthealgebraicclosureQof Q on smooth manifold structures in pro?nite homotopy theory, the K-theory orientation ofPL manifolds and bundles. Some of this material has been already published by Sullivan him- 1 self: in an article in the Proceedings of the 1970 Nice ICM, and in the 1974 Annals of Mathematics papers Genetics of homotopy theory and the Adams conjecture and The transversality character- 2 istic class and linking cycles in surgery theory . Many of the ideas originating in the notes have been the starting point of subsequent 1 reprinted at the end of this volume 2 joint with John Morgan vii viii 3 developments . However, the text itself retains a unique ?avour of its time, and of the range of Sullivan’s ideas.
Author | : Augustin Banyaga |
Publisher | : Springer Science & Business Media |
Total Pages | : 211 |
Release | : 2013-03-14 |
Genre | : Mathematics |
ISBN | : 1475768001 |
In the 60's, the work of Anderson, Chernavski, Kirby and Edwards showed that the group of homeomorphisms of a smooth manifold which are isotopic to the identity is a simple group. This led Smale to conjecture that the group Diff'" (M)o of cr diffeomorphisms, r ~ 1, of a smooth manifold M, with compact supports, and isotopic to the identity through compactly supported isotopies, is a simple group as well. In this monograph, we give a fairly detailed proof that DifF(M)o is a simple group. This theorem was proved by Herman in the case M is the torus rn in 1971, as a consequence of the Nash-Moser-Sergeraert implicit function theorem. Thurston showed in 1974 how Herman's result on rn implies the general theorem for any smooth manifold M. The key idea was to vision an isotopy in Diff'"(M) as a foliation on M x [0, 1]. In fact he discovered a deep connection between the local homology of the group of diffeomorphisms and the homology of the Haefliger classifying space for foliations. Thurston's paper [180] contains just a brief sketch of the proof. The details have been worked out by Mather [120], [124], [125], and the author [12]. This circle of ideas that we call the "Thurston tricks" is discussed in chapter 2. It explains how in certain groups of diffeomorphisms, perfectness leads to simplicity. In connection with these ideas, we discuss Epstein's theory [52], which we apply to contact diffeomorphisms in chapter 6.
Author | : Jane Gilman |
Publisher | : American Mathematical Soc. |
Total Pages | : 200 |
Release | : 2001 |
Genre | : Mathematics |
ISBN | : 0821829661 |
There are a number of specialties in low-dimensional topology that can find in their ``family tree'' a common ancestry in the theory of surface mappings. These include knot theory as studied through the use of braid representations, and 3-manifolds as studied through the use of Heegaard splittings. The study of the surface mapping class group (the modular group) is of course a rich subject in its own right, with relations to many different fields of mathematics and theoreticalphysics. However, its most direct and remarkable manifestation is probably in the vast area of low-dimensional topology. Although the scene of this area has been changed dramatically and experienced significant expansion since the original publication of Professor Joan Birman's seminal work,Braids, Links,and Mapping Class Groups(Princeton University Press), she brought together mathematicians whose research span many specialties, all of common lineage. The topics covered are quite diverse. Yet they reflect well the aim and spirit of the conference: to explore how these various specialties in low-dimensional topology have diverged in the past 20-25 years, as well as to explore common threads and potential future directions of development. This volume is dedicated to Joan Birman by hercolleagues with deep admiration and appreciation of her contribution to low-dimensional topology.
Author | : R. Brown |
Publisher | : Cambridge University Press |
Total Pages | : 260 |
Release | : 1982-05-20 |
Genre | : Mathematics |
ISBN | : 9780521281461 |
This volume consists of the proceedings of a conference held at the University College of North Wales (Bangor) in July of 1979. It assembles research papers which reflect diverse currents in low-dimensional topology. The topology of 3-manifolds, hyperbolic geometry and knot theory emerge as major themes. The inclusion of surveys of work in these areas should make the book very useful to students as well as researchers.