Measurements and Searches with Top Quarks

Measurements and Searches with Top Quarks
Author:
Publisher:
Total Pages: 254
Release: 2008
Genre:
ISBN:

In 1995 the last missing member of the known families of quarks, the top quark, was discovered by the CDF and D0 experiments at the Tevatron, a proton-antiproton collider at Fermilab near Chicago. Until today, the Tevatron is the only place where top quarks can be produced. The determination of top quark production and properties is crucial to understand the Standard Model of particle physics and beyond. The most striking property of the top quark is its mass--of the order of the mass of a gold atom and close to the electroweak scale--making the top quark not only interesting in itself but also as a window to new physics. Due to the high mass, much higher than of any other known fermion, it is expected that the top quark plays an important role in electroweak symmetry breaking, which is the most prominent candidate to explain the mass of particles. In the Standard Model, electroweak symmetry breaking is induced by one Higgs field, producing one additional physical particle, the Higgs boson. Although various searches have been performed, for example at the Large Electron Positron Collider (LEP), no evidence for the Higgs boson could yet be found in any experiment. At the Tevatron, multiple searches for the last missing particle of the Standard Model are ongoing with ever higher statistics and improved analysis techniques. The exclusion or verification of the Higgs boson can only be achieved by combining many techniques and many final states and production mechanisms. As part of this thesis, the search for Higgs bosons produced in association with a top quark pair (t{bar t}H) has been performed. This channel is especially interesting for the understanding of the coupling between Higgs and the top quark. Even though the Standard Model Higgs boson is an attractive candidate, there is no reason to believe that the electroweak symmetry breaking is induced by only one Higgs field. In many models more than one Higgs boson are expected to exist, opening even more channels to search for charged or neutral Higgs bosons. Depending on its mass, the charged Higgs boson is expected to decay either into top quarks or be the decay product of a top quark. For masses below the top quark mass, the top decay into a charged Higgs boson and a b quark can occur at a certain rate, additionally to the decays into W bosons and a b quark. The different decays of W and charged Higgs bosons can lead to deviations of the observed final number of events in certain final states with respect to the Standard Model expectation. A global search for charged Higgs bosons in top quark pair events is presented in this thesis, resulting in the most stringent limits to-date. Besides the decay of top quarks into charged Higgs or W bosons, new physics can also show up in the quark part of the decay. While in the Standard Model the top quark decays with a rate of about 100% into a W boson and a b quark, there are models where the top quark can decay into a W boson and a non-b quark. The ratio of branching fractions in which the top quark decays into a b quark over the branching fractions in which the top quark decays into all quarks is measured as part of this thesis, yielding the most precise measurement today. Furthermore, the Standard Model top quark pair production cross section is essential to be known precisely since the top quark pair production is the main background for t{bar t}H production and many other Higgs and beyond the Standard Model searches. However, not only the search or the test of the Standard Model itself make the precise measurement of the top quark pair production cross section interesting. As the cross section is calculated with high accuracy in perturbative QCD, a comparison of the measurement to the theory expectation yields the possibility to extract the top quark mass from the cross section measurement. Although many dedicated techniques exist to measure the top quark mass, the extraction from the cross section represents an important complementary measurement. The latter is briefly discussed in this thesis and compared to direct top mass measurements. The goal of this thesis is the improved understanding of the top quark sector and its use as a window to new physics. Techniques are extended and developed to measure the top quark pair production cross section simultaneously with the ratio of branching fractions, the t{bar t}H cross section or the rate with which top quarks decay into charged Higgs bosons. Some of the results are then taken to extract more information. The cross section measurement is used to extract the top quark mass, and the ratio of the top quark pair production cross sections in different final states, yielding a limit on non-Standard Model top quark decays.

Top Quark Properties from Top Pair Events and Decays

Top Quark Properties from Top Pair Events and Decays
Author:
Publisher:
Total Pages: 4
Release: 2008
Genre:
ISBN:

Over a decade since the discovery of the top quark we are still trying to unravel mysteries of the heaviest observed particle and learn more about its nature. The continuously accumulating statistics of CDF and DO data provide the means for measuring top quark properties with ever greater precision and the opportunity to search for signs of new physics that could be manifested through subtle deviations from the standard model in the production and decays of top quarks. In the following we present a slice of the rich program in top quark physics at the Fermilab Tevatron: measurements of the properties of top quark decays and searches for unusual phenomena in events with pair produced tops. In particular, we discuss the most recent and precise CDF and DO measurements of the transverse polarization of W bosons from top decays, branching ratios and searches for flavor-changing neutral current decays, decays into charged Higgs and invisible decays. These analyses correspond to integrated luminosities ranging from 0.9 to 2.7 fb−1.

Top Quark Mass Measurements

Top Quark Mass Measurements
Author: A. P. Heinson
Publisher:
Total Pages: 5
Release: 2006
Genre:
ISBN:

First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.

Top Quark Physics

Top Quark Physics
Author:
Publisher:
Total Pages: 111
Release: 2000
Genre:
ISBN:

The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t 2!Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of [tau] decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by the small sample of top quarks collected at the Tevatron up to now. The LHC is, in comparison, a top factory, producing about 8 million t{bar t}pairs per experiment per year at low luminosity (10 fb−1/year), and another few million (anti- )tops in EW single (anti- )top quark production. They therefore expect that top quark properties can be examined with significant precision at the LHC. Entirely new measurements can be contemplated on the basis of the large available statistics.

Discovery of Single Top Quark Production

Discovery of Single Top Quark Production
Author: Dag Gillberg
Publisher: Springer Science & Business Media
Total Pages: 149
Release: 2011-01-22
Genre: Science
ISBN: 1441977996

The top quark is by far the heaviest known fundamental particle with a mass nearing that of a gold atom. Because of this strikingly high mass, the top quark has several unique properties and might play an important role in electroweak symmetry breaking—the mechanism that gives all elementary particles mass. Creating top quarks requires access to very high energy collisions, and at present only the Tevatron collider at Fermilab is capable of reaching these energies. Until now, top quarks have only been observed produced in pairs via the strong interaction. At hadron colliders, it should also be possible to produce single top quarks via the electroweak interaction. Studies of single top quark production provide opportunities to measure the top quark spin, how top quarks mix with other quarks, and to look for new physics beyond the standard model. Because of these interesting properties, scientists have been looking for single top quarks for more than 15 years. This thesis presents the first discovery of single top quark production. It documents one of the flagship measurements of the D0 experiment, a collaboration of more than 600 physicists from around the world. It describes first observation of a physical process known as “single top quark production”, which had been sought for more than 10 years before its eventual discovery in 2009. Further, his thesis describes, in detail, the innovative approach Dr. Gillberg took to this analysis. Through the use of Boosted Decision Trees, a machine-learning technique, he observed the tiny single top signal within an otherwise overwhelming background. This Doctoral Thesis has been accepted by Simon Fraser University, Burnaby, BC, Canada.

Properties of the Top Quark

Properties of the Top Quark
Author:
Publisher:
Total Pages: 141
Release: 2009
Genre:
ISBN:

The aim of particle physics is the understanding of elementary particles and their interactions. The current theory of elementary particle physics, the Standard Model, contains twelve different types of fermions which (neglecting gravity) interact through the gauge bosons of three forces. In addition a scalar particle, the Higgs boson, is needed for theoretical consistency. These few building blocks explain all experimental results found in the context of particle physics, so far. Nevertheless, it is believed that the Standard Model is only an approximation to a more complete theory. First of all the fourth known force, gravity, has withstood all attempts to be included until now. Furthermore, the Standard Model describes several features of the elementary particles like the existence of three families of fermions or the quantisation of charges, but does not explain these properties from underlying principles. Finally, the lightness of the Higgs boson needed to explain the symmetry breaking is difficult to maintain in the presence of expected corrections from gravity at high scales. This is the so called hierarchy problem. In addition astrophysical results indicate that the universe consists only to a very small fraction of matter described by the Standard Model. Large fractions of dark energy and dark matter are needed to describe the observations. Both do not have any correspondence in the Standard Model. Also the very small asymmetry between matter and anti-matter that results in the observed universe built of matter (and not of anti-matter) cannot be explained until now. It is thus an important task of experimental particle physics to test the predictions of the Standard Model to the best possible accuracy and to search for deviations pointing to necessary extensions or modifications of our current theoretical understanding. The top quark was predicted to exist by the Standard Model as the partner of the bottom quark. It was first observed in 1995 by the Tevatron experiments CDF and D0 and was the last of the quarks to be discovered. As the partner of the bottom quark the top quark is expected to have quantum numbers identical to that of the other known up-type quarks. Only the mass is a free parameter. We now know that it is more than 30 times heavier than the next heaviest quark, the bottom quark. Thus, within the Standard Model all production and decay properties are fully defined. Having the complete set of quarks further allows to verify constraints that the Standard Model puts on the sum of all quarks or particles. This alone is reason enough to experimentally study the top quark properties. The high value of the top quark mass and its closeness to the electroweak scale has inspired people to speculate that the top quark could have a special role in the electroweak symmetry breaking. Confirming the expected properties of the top quark experimentally establishes the top quark as we expect it to be. Any deviation from the expectations gives hints to new physics that may help to solve the outstanding questions. In this review the recent results on top quark properties obtained by the Tevatron experiments CDF and D0 are summarized. At the advent of the LHC special emphasis is given to the basic measurement methods and the dominating systematic uncertainties. After a short introduction to the Standard Model and the experimental environment in the remainder of this chapter, Chapter 2 describes the current status of top quark mass measurements. Then measurments of interaction properties are described in Chapter 3. Finally, Chapter 4 deals with analyses that consider hypothetical particles beyond the Standard Model in the observed events.

Measurement of the Top Quark Mass Using Single Top Quark Events in Proton-proton Collisions at $\sqrt{s}$

Measurement of the Top Quark Mass Using Single Top Quark Events in Proton-proton Collisions at $\sqrt{s}$
Author:
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

A measurement of the top quark mass is reported in events containing a single top quark produced via the electroweak t channel. The analysis is performed using data from proton-proton collisions collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV, corresponding to an integrated luminosity of 19.7 inverse femtobarns. The top quark is reconstructed from its decay to a W boson and a b quark, with the W boson decaying leptonically to a muon and a neutrino. The specific topology and kinematic properties of single top quark events in the t channel are used to enhance the purity of the sample, suppressing the contribution from top quark pair production. A fit to the invariant mass distribution of reconstructed top quark candidates yields a value of the top quark mass of 172.95 +/- 0.77 (stat) +0.97/-0.93 (syst) GeV. This result is in agreement with the current world average, and represents the first measurement of the top quark mass in event topologies not dominated by top quark pair production.

Top Quark, Heavy Flavor Physics And Symmetry Breaking, The - Proceedings Of The Xxiii International Meeting On Fundamental Physics

Top Quark, Heavy Flavor Physics And Symmetry Breaking, The - Proceedings Of The Xxiii International Meeting On Fundamental Physics
Author: Teresa Rodrigo
Publisher: World Scientific
Total Pages: 340
Release: 1996-03-31
Genre:
ISBN: 9814548847

This meeting discussed the experimental results and theoretical aspects in the field of high energy physics, with special reference to the top quark observation, heavy flavor physics and symmetry-breaking mechanisms. The major topics are developed in a series of course lectures.