Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Behavior Guidance System Siting Studies

Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Behavior Guidance System Siting Studies
Author: Gary E. Johnson
Publisher:
Total Pages:
Release: 2005
Genre:
ISBN:

Computational fluid dynamics (CFD) models were developed to support the siting and design of a behavioral guidance system (BGS) structure in The Dalles Dam (TDA) forebay on the Columbia River. The work was conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (CENWP). The CFD results were an invaluable tool for the analysis, both from a Regional and Agency perspective (for the fish passage evaluation) and a CENWP perspective (supporting the BGS design and location). The new CFD model (TDA forebay model) included the latest bathymetry (surveyed in 1999) and a detailed representation of the engineered structures (spillway, powerhouse main, fish, and service units). The TDA forebay model was designed and developed in a way that future studies could easily modify or, to a large extent, reuse large portions of the existing mesh. This study resulted in these key findings: (1) The TDA forebay model matched well with field-measured velocity data. (2) The TDA forebay model matched observations made at the 1:80 general physical model of the TDA forebay. (3) During the course of this study, the methodology typically used by CENWP to contour topographic data was shown to be inaccurate when applied to widely-spaced transect data. Contouring methodologies need to be revisited--especially before such things as modifying the bathymetry in the 1:80 general physical model are undertaken. Future alignments can be evaluated with the model staying largely intact. The next round of analysis will need to address fish passage demands and navigation concerns. CFD models can be used to identify the most promising locations and to provide quantified metrics for biological, hydraulic, and navigation criteria. The most promising locations should then be further evaluated in the 1:80 general physical model.

Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Vortex Suppress Device Studies

Forebay Computational Fluid Dynamics Modeling for The Dalles Dam to Support Vortex Suppress Device Studies
Author:
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

A computational fluid dynamics (CFD) model was used in an investigation into the suppression of a surface vortex that forms and the south-most spilling bay at The Dalles Project. The CFD work complemented work at the prototype and the reduced-scale physical models. The CFD model was based on a model developed for other work in the forebay but had additional resolution added near the spillway. Vortex suppression devices (VSDs) were to placed between pier noses and/or in the bulkhead slot of the spillway bays. The simulations in this study showed that placing VSD structures or a combination of structures to suppress the vortex would still result in near-surface flows to be entrained in a vortex near the downstream spillwall. These results were supported by physical model and prototype studies. However, there was a consensus of the fish biologists at the physical model that the fish would most likely move north and if the fish went under the VSD it would immediately exit the forebay through the tainter gate and not get trapped between VSDs or the VSDs and the tainter gate if the VSDs were deep enough.

The Dalles Dam, Columbia River

The Dalles Dam, Columbia River
Author:
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

This report documents development of computational fluid dynamics (CFD) models that were applied to The Dalles spillway for the US Army Corps of Engineers, Portland District. The models have been successfully validated against physical models and prototype data, and are suitable to support biological research and operations management. The CFD models have been proven to provide reliable information in the turbulent high-velocity flow field downstream of the spillway face that is typically difficult to monitor in the prototype. In addition, CFD data provides hydraulic information throughout the solution domain that can be easily extracted from archived simulations for later use if necessary. This project is part of an ongoing program at the Portland District to improve spillway survival conditions for juvenile salmon at The Dalles. Biological data collected at The Dalles spillway have shown that for the original spillway configuration juvenile salmon passage survival is lower than desired. Therefore, the Portland District is seeking to identify operational and/or structural changes that might be implemented to improve fish passage survival. Pacific Northwest National Laboratory (PNNL) went through a sequence of steps to develop a CFD model of The Dalles spillway and tailrace. The first step was to identify a preferred CFD modeling package. In the case of The Dalles spillway, Flow-3D was as selected because of its ability to simulate the turbulent free-surface flows that occur downstream of each spilling bay. The second step in development of The Dalles CFD model was to assemble bathymetric datasets and structural drawings sufficient to describe the dam (powerhouse, non-overflow dam, spillway, fish ladder entrances, etc.) and tailrace. These datasets are documented in this report as are various 3-D graphical representations of The Dalles spillway and tailrace. The performance of the CFD model was then validated for several cases as the third step. The validated model was then applied to address specific SIS design questions. Specifically, the CFD models were used to evaluate flow deflectors, baffle block removal and the effects of spillwalls. The CFD models were also used to evaluate downstream differences at other locations, such as at the Highway 197 bridge piers and Oregon shore islands, due to alterations in spill pattern. CFD model results were analyzed to quantitatively compare impacts of the spillwall that has subsequently been constructed between bays 6 and 7. CFD model results provided detailed information about how the spillwall would impact downstream flow patterns that complemented results from the 1:80 scale physical model. The CFD model was also used to examine relative differences between the juvenile spill pattern used in previous years and the anticipated spill pattern that will be applied once the wall is complete. In addition, the CFD model examined velocity magnitudes over the downstream basalt shelf to investigate potential for erosion under high flow conditions (e.g., 21 kcfs/bay for bays 1 through 6) with the spillwall in place. Several appendices follow the results and discussion sections of this report. These appendices document the large number of CFD simulations that have been performed by PNNL; both spillway improvement study (SIS) related and those performed for related biological tests.

Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay

Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

Computational Fluid Dynamics (CFD) Modeling to Support the Reduction of Fish Passage Exposure to Elevated Total Dissolved Gas and Predator Habitats at McNary Dam

Computational Fluid Dynamics (CFD) Modeling to Support the Reduction of Fish Passage Exposure to Elevated Total Dissolved Gas and Predator Habitats at McNary Dam
Author: Joseph T. Dvorak
Publisher:
Total Pages: 257
Release: 2013
Genre: Fish habitat improvement
ISBN:

The TDG distribution was then compared, using the grid of medium refinement against field data measured in 1997and were between 1.5 and 3% of error depending on the transect. After validation of the model 16 predictive simulations were run with varying levels of total river flow and operational conditions. Tailrace hydrodynamics along with TDG production and distribution were compared for simulations with comparable total river flow rates. Fish trajectories were tracked using the particle tracking model. Inert particles were injected into the domain and properties such as velocity, distance to the shore and depth about each were recorded. Statistics were then generated for the particles based on criteria that defined dangerous predation zones within the tailrace. After completion of the simulations, it was determined that existing operations consistentlyproduced higher levels of TDG due to increased entrainment of the powerhouse flows into the spillway regions. It was also found that with increasing total river flows, TDG levels increased. On average, summer operations had lower TDG than spring due to the lower total river flows. Predation zones were similar for all simulations, but particle statistics varied depending on operational conditions. In general, particles were safer for higher flowrates as fewer low velocity eddies where particles could be trapped formed in simulations with high flowrates.

Computational Fluid Dynamics

Computational Fluid Dynamics
Author: Paul D. Bates
Publisher: John Wiley & Sons
Total Pages: 540
Release: 2005-08-05
Genre: Science
ISBN: 0470015187

Uniquely outlines CFD theory in a manner relevant to environmental applications. This book addresses the basic topics in CFD modelling in a thematic manner to provided the necessary theoretical background, as well as providing global cases studies showing how CFD models can be used in practice demonstrating how good practice can be achieved , with reference to both established and new applications. First book to apply CFD to the environmental sciences Written at a level suitable for non-mathematicians