Thin-Film Solar Cells Performances Optimization

Thin-Film Solar Cells Performances Optimization
Author: Fridolin Tchangnwa Nya
Publisher:
Total Pages: 0
Release: 2018
Genre: Electronic books
ISBN:

In this chapter, we investigate a way of improving solar cells performances. By focusing studies on optimizing the structural, the opto-electrical and electronic properties of materials that constitute the layers and interfaces of a solar device, such as electrical susceptibility, doping concentration, mobility of charge carriers and crystallographic structure, it is possible to improve the output parameters of a solar cell. Working on a CIGSe-based second-generation ultra-thin solar cell model, and using Zinc Sulfide (ZnS) as a window layer, and based on recent studies, vital information are found on the optimal values of these properties that may enhance the efficiency of the cell. A correct modeling of the device with a trusted software such as SCAPS and an appropriate set of the exact conditions and parameters of simulation allow to obtain very promising results. In particular, for nanoscale and microscale thicknesses of buffer and absorber layers materials respectively, and with an appropriate choice of other materials properties such as intrinsic doping concentration, electrons and holes mobilities, it is possible to record efficiencies and fill factors of more than 26% and 85% respectively. These values are very promising for solar energy harvesting technologies development through CIGSe ,Äì ZnS based solar devices.

Solar Cells

Solar Cells
Author: Ahmed Mourtada Elseman
Publisher: BoD – Books on Demand
Total Pages: 489
Release: 2021-09-22
Genre: Technology & Engineering
ISBN: 1838810161

Solar cell energy is the single most pressing issue facing humanity, with a more technologically advanced society requiring better energy resources. This book discusses technologies broadly, depending on how they capture and distribute solar energy or convert it into solar power. The major areas covered in this book are: • The theory of solar cells, which explains the conversion of light energy in photons into electric current. The theoretical studies are practical because they predict the fundamental limits of a solar cell. • The design and development of thin-film technology-based solar cells. • State of the art for bulk material applied for solar cells based on crystalline silicon (c-Si), also known as “solar grade silicon,” and emerging photovoltaics.

Performance Optimization of Cu(In1-x,Gax)(Se1-y,Sy)2 Thin-film Solar Cells by Characterization and Modelling of Temperature and Low-light Behavior

Performance Optimization of Cu(In1-x,Gax)(Se1-y,Sy)2 Thin-film Solar Cells by Characterization and Modelling of Temperature and Low-light Behavior
Author: Hamsa Ahmed
Publisher:
Total Pages: 0
Release: 2021
Genre:
ISBN:

In this work, the impact of structural variations of CIGS solar cells on their temperature coefficients, their stability, and their low light performance is studied. The layer modifications implemented for this study include different buffer, window layers and back contacts materials, and different double graded absorbers with change in their thickness and sodium post deposition treatment. It was demonstrated that the absorber layer exhibits the largest influence on the temperature dependence of the power output amongst all modified layers of the structure. The buffer and the absorber elemental composition showed to play an important role in the elemental interdiffusion and hence led to the creation of amphoteric defects that are light and temperature sensitive. Studies on the impact of different solar cell structures on the shift of the dominant recombination region at different light intensities were also performed.

Performance Optimization of Cu(In1-x,Gax)(Se1-y,Sy)2 Thin-film Solar Cells by Characterization and Modelling of Temperature and Low-light Behavior

Performance Optimization of Cu(In1-x,Gax)(Se1-y,Sy)2 Thin-film Solar Cells by Characterization and Modelling of Temperature and Low-light Behavior
Author: Hamsa Ahmed
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

In this work, the impact of structural variations of CIGS solar cells on their temperature coefficients, their stability, and their low light performance is studied. The layer modifications implemented for this study include different buffer, window layers and back contacts materials, and different double graded absorbers with change in their thickness and sodium post deposition treatment. It was demonstrated that the absorber layer exhibits the largest influence on the temperature dependence of the power output amongst all modified layers of the structure. The buffer and the absorber elemental composition showed to play an important role in the elemental interdiffusion and hence led to the creation of amphoteric defects that are light and temperature sensitive. Studies on the impact of different solar cell structures on the shift of the dominant recombination region at different light intensities were also performed.

Optimization of Film Morphology for the Performance of Organic Thin Film Solar Cells

Optimization of Film Morphology for the Performance of Organic Thin Film Solar Cells
Author: Eric S. Muckley
Publisher:
Total Pages: 138
Release: 2013
Genre: Organic semiconductors
ISBN: 9781303209093

Abstract: The power conversion efficiency of organic thin film solar cells must be improved before they can become commercially competitive alternatives to silicon-based photovoltaics. Exciton diffusion and charge carrier migration in organic films are strongly influenced by film morphology, which can be controlled by the substrate temperature during film growth. Zinc-phthalocyaninelbuckminsterfullerene bilayer film devices are fabricated with substrate temperatures between 25 C and 224 C and their solar cell performance is investigated here. The device open-circuit voltage, efficiency, and fill factor all exhibit peaks when films are grown at temperatures between 160 C and 180 C, which is likely a result of both the increase in shunt resistance and reduction in undesirable back diode effects which occur between l00 C and 180 C. The device performance can also be attributed to changes in the film crystallite size, roughness, and abundance of pinholes, as well as the occurrence of crystalline phase transitions which occur in both zinc-phthalocyanine and buckminsterfullerene between 150 C and 200 C. The unusually high open-circuit voltage (1.2 V), low short-circuit current density (0.03 mA/cm 2), and low device efficiency (0.04%) reported here are reminiscent of single layer phthalocyanine-based Schottky solar cells, which suggests that pinholes in bilayer film devices can effectively lead to the formation of Schottky diodes.

Recent Advances in Thin Film Photovoltaics

Recent Advances in Thin Film Photovoltaics
Author: Udai P. Singh
Publisher: Springer Nature
Total Pages: 281
Release: 2022-09-02
Genre: Technology & Engineering
ISBN: 9811937249

This book provides recent development in thin-film solar cells (TFSC). TFSC have proven the promising approach for terrestrial and space photovoltaics. TFSC have the potential to change the device design and produce high efficiency devices on rigid/flexible substrates with significantly low manufacturing cost. TFSC have several advantages in manufacturing compared to traditional crystalline Si-solar cells like less requirement of materials, can be prepared with earth’s abundant materials, less processing steps, easy to dispose, etc. Several universities/research institutes/industry in India and abroad are involved in the research area of thin-film solar cells. The book helps the readers to find the details about different thin-film technologies and its advancement at one place. Each chapter covers properties of materials, its suitability for PV applications, simple manufacturing processes and recent and past literature survey. The issues related to the development of high efficiency TFSC devices over large area and its commercial and future prospects are discussed.

Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells

Optimization of Process Parameters for Reduced Thickness CIGSeS Thin Film Solar Cells
Author: Shirish A. Pethe
Publisher:
Total Pages: 116
Release: 2010
Genre: Copper indium selenide
ISBN:

With further optimization of the reaction process of the absorber layer as well as the other layers higher efficiencies can be achieved. The effect of sodium on the device performance is experimentally verified in this work. To the best of our knowledge the detrimental effect of excess sodium has been verified by experimental data and effort has been made to correlate the variation in PV parameter to theoretical models of effect of sodium. It has been a regular practice to deposit thin barrier layer prior to molybdenum deposition to reduce the micrononuniformities caused due to nonuniform out diffusion of sodium from the soda lime glass. However, it was proven in this work that an optimally thick barrier layer is necessary to reduce the out diffusion of sodium to negligible quantities and thus reduce the micrononuniformities. Molybdenum back contact deposition is a bottleneck in high volume manufacturing due to the current state of art where multi layer molybdenum film needs to be deposited to achieve the required properties. In order to understand and solve this problem experiments were carried out. The effect of working distance (distance between the target and the substrate) on film properties was studied and is presented in this work. During the course of this work efforts were taken to carry out a systematic and detailed study of some of the fundamental issues related to CIGS technology and particular for high volume manufacturing of CIGS PV modules and lay a good foundation for further improvement of PV performance of CIGS thin film solar cells prepared by the two step process of selenization and sulfurization of sputtered metallic precursors.

Optimization, Design and Performance Analysis of Light Trapping Structures in Thin Film Solar Cells

Optimization, Design and Performance Analysis of Light Trapping Structures in Thin Film Solar Cells
Author: Shima Hajimirza
Publisher:
Total Pages: 464
Release: 2013
Genre:
ISBN:

Solar cells are at the frontier of renewable energy technologies. Photovoltaic energy is clean, reusable, can be used anywhere in our solar system and can be very well integrated with power distribution grids and advanced technological systems. Thin film solar cells are a class of solar cells that offer low material cost, efficient fabrication process and compatibility with advanced electronics. However, as of now, the conversion efficiency of thin film solar cells is inferior to that of thick crystalline cells. Research efforts to improve the performance bottlenecks of thin film solar cells are highly motivated. A class of techniques towards this goal is called light trapping methods, which aims at improving the spectral absorptivity of a thin film cell by using surface texturing. The precise mathematical and physical characterization of these techniques is very challenging. This dissertation proposes a numerical and computational framework to optimize, design, and fabricate efficient light trapping structures in thin film solar cells, as well as methods to verify the fabricated designs. The numerical framework is based on the important "inverse optimization" technique, which is very is widely applicable to engineering design problems. An overview of the state-of-the-art thin film technology and light trapping techniques is presented in this thesis. The inverse problem is described in details with numerous examples in engineering applications, and is then applied to light trapping optimization. The proposed designs are studied for sensitivity analysis and fabrication error, as other aspects of the proposed computational framework. At the end, reports of fabrication, measurement and verification of some of the proposed designs are presented.

Thin Film Solar Cells

Thin Film Solar Cells
Author: Jef Poortmans
Publisher: John Wiley & Sons
Total Pages: 504
Release: 2006-10-16
Genre: Science
ISBN: 0470091266

Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.