Phase Diagrams and Thermodynamic Modeling of Solutions

Phase Diagrams and Thermodynamic Modeling of Solutions
Author: Arthur D. Pelton
Publisher: Academic Press
Total Pages: 404
Release: 2018-09-19
Genre: Science
ISBN: 0128016698

Phase Diagrams and Thermodynamic Modeling of Solutions provides readers with an understanding of thermodynamics and phase equilibria that is required to make full and efficient use of these tools. The book systematically discusses phase diagrams of all types, the thermodynamics behind them, their calculations from thermodynamic databases, and the structural models of solutions used in the development of these databases. Featuring examples from a wide range of systems including metals, salts, ceramics, refractories, and concentrated aqueous solutions, Phase Diagrams and Thermodynamic Modeling of Solutions is a vital resource for researchers and developers in materials science, metallurgy, combustion and energy, corrosion engineering, environmental engineering, geology, glass technology, nuclear engineering, and other fields of inorganic chemical and materials science and engineering. Additionally, experts involved in developing thermodynamic databases will find a comprehensive reference text of current solution models. - Presents a rigorous and complete development of thermodynamics for readers who already have a basic understanding of chemical thermodynamics - Provides an in-depth understanding of phase equilibria - Includes information that can be used as a text for graduate courses on thermodynamics and phase diagrams, or on solution modeling - Covers several types of phase diagrams (paraequilibrium, solidus projections, first-melting projections, Scheil diagrams, enthalpy diagrams), and more

Solution Thermodynamics and Its Application to Aqueous Solutions

Solution Thermodynamics and Its Application to Aqueous Solutions
Author: Yoshikata Koga
Publisher: Elsevier
Total Pages: 448
Release: 2017-03-28
Genre: Science
ISBN: 0444636307

Solution Thermodynamics and its Application to Aqueous Solutions: A Differential Approach, Second Edition introduces a differential approach to solution thermodynamics, applying it to the study of aqueous solutions. This valuable approach reveals the molecular processes in solutions in greater depth than that gained by spectroscopic and other methods. The book clarifies what a hydrophobe, or a hydrophile, and in turn, an amphiphile, does to H2O. By applying the same methodology to ions that have been ranked by the Hofmeister series, the author shows that the kosmotropes are either hydrophobes or hydration centers, and that chaotropes are hydrophiles. This unique approach and important updates make the new edition a must-have reference for those active in solution chemistry. - Unique differential approach to solution thermodynamics allows for experimental evaluation of the intermolecular interaction - Incorporates research findings from over 40 articles published since the previous edition - Numerical or graphical evaluation and direct experimental determination of third derivatives, enthalpic and volumetric AL-AL interactions and amphiphiles are new to this edition - Features new chapters on spectroscopic study in aqueous solutions as well as environmentally friendly and hostile water aqueous solutions

Molecular Thermodynamics Of Electrolyte Solutions (Second Edition)

Molecular Thermodynamics Of Electrolyte Solutions (Second Edition)
Author: Lloyd L Lee
Publisher: World Scientific
Total Pages: 295
Release: 2021-01-07
Genre: Technology & Engineering
ISBN: 9811233012

Electrolytes and salt solutions are ubiquitous in chemical industry, biology and nature. This unique compendium introduces the elements of the solution properties of ionic mixtures. In addition, it also serves as a bridge to the modern researches into the molecular aspects of uniform and non-uniform charged systems. Notable subjects include the Debye-Hückel limit, Pitzer's formulation, Setchenov salting-out, and McMillan-Mayer scale. Two new chapters on industrial applications — natural gas treating, and absorption refrigeration, are added to make the book current and relevant.This textbook is eminently suitable for undergraduate and graduate students. For practicing engineers without a background in salt solutions, this introductory volume can also be used as a self-study.

Classical Thermodynamics of Non-Electrolyte Solutions

Classical Thermodynamics of Non-Electrolyte Solutions
Author: H. C. Van Ness
Publisher: Elsevier
Total Pages: 176
Release: 2013-10-22
Genre: Science
ISBN: 148322547X

Classical Thermodynamics of Non-Electrolyte Solutions covers the historical development of classical thermodynamics that concerns the properties of vapor and liquid solutions of non-electrolytes. Classical thermodynamics is a network of equations, developed through the formal logic of mathematics from a very few fundamental postulates and leading to a great variety of useful deductions. This book is composed of seven chapters and begins with discussions on the fundamentals of thermodynamics and the thermodynamic properties of fluids. The succeeding chapter presents the equations of state for the calculation of the thermodynamic behavior of constant-composition fluids, both liquid and gaseous. These topics are followed by surveys of the mixing of pure materials to form a solution under conditions of constant temperature and pressure. The discussion then shifts to general equations for calculation of partial molal properties of homogeneous binary systems. The last chapter considers the approach to equilibrium of systems within which composition changes are brought about either by mass transfer between phases or by chemical reaction within a phase, or by both.

Thermodynamics of Solutions

Thermodynamics of Solutions
Author: Eli Ruckenstein
Publisher: Springer Science & Business Media
Total Pages: 349
Release: 2009-06-17
Genre: Science
ISBN: 1441904409

This book consists of a number of papers regarding the thermodynamics and structure of multicomponent systems that we have published during the last decade. Even though they involve different topics and different systems, they have something in common which can be considered as the “signature” of the present book. First, these papers are concerned with “difficult” or very nonideal systems, i. e. systems with very strong interactions (e. g. , hyd- gen bonding) between components or systems with large differences in the partial molar v- umes of the components (e. g. , the aqueous solutions of proteins), or systems that are far from “normal” conditions (e. g. , critical or near-critical mixtures). Second, the conventional th- modynamic methods are not sufficient for the accurate treatment of these mixtures. Last but not least, these systems are of interest for the pharmaceutical, biomedical, and related ind- tries. In order to meet the thermodynamic challenges involved in these complex mixtures, we employed a variety of traditional methods but also new methods, such as the fluctuation t- ory of Kirkwood and Buff and ab initio quantum mechanical techniques. The Kirkwood-Buff (KB) theory is a rigorous formalism which is free of any of the - proximations usually used in the thermodynamic treatment of multicomponent systems. This theory appears to be very fruitful when applied to the above mentioned “difficult” systems.

Engineering and Chemical Thermodynamics

Engineering and Chemical Thermodynamics
Author: Milo D. Koretsky
Publisher: John Wiley & Sons
Total Pages: 724
Release: 2012-12-17
Genre: Technology & Engineering
ISBN: 0470259612

Chemical engineers face the challenge of learning the difficult concept and application of entropy and the 2nd Law of Thermodynamics. By following a visual approach and offering qualitative discussions of the role of molecular interactions, Koretsky helps them understand and visualize thermodynamics. Highlighted examples show how the material is applied in the real world. Expanded coverage includes biological content and examples, the Equation of State approach for both liquid and vapor phases in VLE, and the practical side of the 2nd Law. Engineers will then be able to use this resource as the basis for more advanced concepts.

Materials Thermodynamics

Materials Thermodynamics
Author: Y. Austin Chang
Publisher: John Wiley & Sons
Total Pages: 317
Release: 2010-01-26
Genre: Science
ISBN: 0470549955

A timely, applications-driven text in thermodynamics Materials Thermodynamics provides both students and professionals with the in-depth explanation they need to prepare for the real-world application of thermodynamic tools. Based upon an actual graduate course taught by the authors, this class-tested text covers the subject with a broader, more industry-oriented lens than can be found in any other resource available. This modern approach: Reflects changes rapidly occurring in society at large—from the impact of computers on the teaching of thermodynamics in materials science and engineering university programs to the use of approximations of higher order than the usual Bragg-Williams in solution-phase modeling Makes students aware of the practical problems in using thermodynamics Emphasizes that the calculation of the position of phase and chemical equilibrium in complex systems, even when properly defined, is not easy Relegates concepts like equilibrium constants, activity coefficients, free energy functions, and Gibbs-Duhem integrations to a relatively minor role Includes problems and exercises, as well as a solutions manual This authoritative text is designed for students and professionals in materials science and engineering, particularly those in physical metallurgy, metallic materials, alloy design and processing, corrosion, oxidation, coatings, and high-temperature alloys.

Practical Chemical Thermodynamics for Geoscientists

Practical Chemical Thermodynamics for Geoscientists
Author: Bruce Fegley
Publisher: Academic Press
Total Pages: 816
Release: 2013
Genre: Science
ISBN: 012251100X

-- Presents brief historical summaries and biographies of key thermodynamics scientists alongside the fundamentals they were responsible for.