Thermal Strain Fatigue Modeling of a Matrix Alloy for a Metal Matrix Composite

Thermal Strain Fatigue Modeling of a Matrix Alloy for a Metal Matrix Composite
Author: BA. Lerch
Publisher:
Total Pages: 18
Release: 2000
Genre: Alloys
ISBN:

The Total Strain Version of the method of Strainrange Partitioning was used as the basis for modeling the thermomechanical fatigue resistance of the matrix material of the metal matrix composite, SCS-6/Ti-15-3. As prescribed by the model, the resistance was assessed through the use of bithermal creep-fatigue experiments. Bithermal temperatures of 205 and 427°C were imposed. A minimal number of strain limit-controlled, in-phase PP (pure fatigue, no creep) and CP (tensile creep) as well as out-of-phase PP (pure fatigue, no creep) and PC (compressive creep) experiments were conducted on conventional, axially-loaded, cylindrical-bar specimens. Inelastic strain range versus cyclic life curves for each of the Strainrange Partitioning bithermal cycles were evaluated and found to be nominally coincident. Cyclic elastic strain range versus inelastic strain range curves as well as elastic strain range versus life curves were documented for pure-fatigue and creep-fatigue conditions. The time-dependencies of these relationships were calibrated with the available data. These results enable the construction of total strain range versus fatigue life curves for thermomechanical fatigue for in- and out-of-phasing and for any arbitrary creep-time per cycle. Results are pplicable to the cyclic life prediction of metal matrix composites using the Ti-15-3 matrix material.

Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling

Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling
Author: J. Bressers
Publisher: Springer Science & Business Media
Total Pages: 497
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 9401586365

The International Symposium "Fatigue under Thermal and Mechanical Loading", held at Petten (The Netherlands) on May 22-24, 1995, was jointly organized by the Institute for Advanced Materials of The Joint Research Centre, E. C. , and by the Societe Fran~se de Metallurgie et de Materiaux. The fast heating and cooling cycles experienced by many high temperature components cause thermally induced stresses, which often operate in combination with mechanical loads. The resulting thermal / mechanical fatigue cycle leads to material degradation mechanisms and failure modes typical of service cycles. The growing awareness that the synergism between the combined thermal and mechanical loads can not be reproduced by means of isothermal tests, has resulted in an increasing interest in thermal and thermo-mechanical fatigue testing. This trend has been reinforced by the constant pull by industry for more performant, yet safer high temperature systems, pushing the materials to the limit of their properties. Dedicated ASTM meetings in particular have set the scene for this area of research. The proceedings of the symposium organized by D. A. Spera and D. F. Mowbray in 1975 provided a reference book on thermal fatigue which reflects the knowledge and experimental capabilities of the mid-seventies.

Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites

Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites
Author: John M. Kennedy
Publisher: ASTM International
Total Pages: 260
Release: 1990
Genre: Ceramic-matrix composites
ISBN: 0803113854

Of interest to researchers and practitioners in materials science, especially in the aerospace industry, 16 papers from a symposium in Atlanta, Georgia, November 1988 discuss the analysis, modeling, and behavior of both continuous and discontinuous ceramic and metal matrix composites, and methods of

Metal Matrix Composites

Metal Matrix Composites
Author: Minoru Taya
Publisher: Elsevier
Total Pages: 275
Release: 2016-01-11
Genre: Technology & Engineering
ISBN: 1483191133

Metal Matrix Composites: Thermomechanical Behavior discusses metal matrix composites, elaborating on that consists of two phases—fiber as reinforcement and metal as matrix. This book focuses on polymer matrix composites, including topics in metal matrix composites ranging from processing to fracture mechanics. The three basic types of composite materials—dispersion-strengthened, particle-reinforced, and fiber (whisker)-reinforced, are also described in detail. Dispersion-strengthened is characterized by a microstructure consisting of an elemental matrix within which fine particles are uniformly dispersed, while particle-reinforced is indicated by dispersed particles of greater than 1.0 μm diameter with a volume fraction of 5 to 40%. Fiber (whisker)-reinforced provides a distinguishing microstructural feature of fiber-reinforced materials, such as that the reinforcing fiber has one long dimension, while the reinforcing particles of the other two types do not. This publication serves as a reference data book to students and researchers aiming to acquire knowledge of the thermomechanical behavior of metal matrix composites.

Thermomechanical Fatigue Behavior of Materials

Thermomechanical Fatigue Behavior of Materials
Author: Michael A. McGaw
Publisher: ASTM International
Total Pages: 330
Release: 2003
Genre: Alloys
ISBN: 0803134673

"ASTM Stock Number: STP1428. - "Fourth Symposium on Thermomechanical Fatigue Behavior of Materials, held in Dallas, Texas on November 7-8, 2001. The Symposium was sponsored by ASTM Committee E08 on Fatigue and Fracture and its Subcommittee E08.05 on Cyclic Deformation and Fat. - Includes bibliographical references and indexes. ASTM International; 2011.

Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites

Simulation of Fatigue Behavior of High Temperature Metal Matrix Composites
Author: CC. Chamis
Publisher:
Total Pages: 12
Release: 1996
Genre: Computational simulations
ISBN:

A generalized relatively new approach is described for the computational simulation of fatigue behavior of high temperature metal matrix composites (HT-MMCs). This theory is embedded in a specialty-purpose computer code. The effectiveness of the computer code to predict the fatigue behavior of HT-MMCs is demonstrated by applying it to a silicon-fiber/titanium-matrix HT-MMC. Comparative results are shown for mechanical fatigue, thermal fatigue, thermomechanical (in-phase and out-of-phase) fatigue, as well as the effects of oxidizing environments on fatigue life. These results show that the new approach reproduces available experimental data remarkably well.

Titanium Matrix Composites

Titanium Matrix Composites
Author: Shankar Mall
Publisher: CRC Press
Total Pages: 478
Release: 2020-01-29
Genre: Technology & Engineering
ISBN: 1000717658

A review and summary of advancements related to mechanical behavior and related mechanics issues of titanium matrix composites (TMCs), a class of high-temperature materials useful in the propulsion and airframe components in advanced aerospace systems. After an introduction to TMCs, different authors review and summarise the advancements related to mechanical behavior and related mechanics issues of TMCs.