Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods

Theory Of Magnetism Made Simple, The: An Introduction To Physical Concepts And To Some Useful Mathematical Methods
Author: Daniel C Mattis
Publisher: World Scientific Publishing Company
Total Pages: 585
Release: 2006-03-10
Genre: Science
ISBN: 9813102225

This new version of a classic updates much of the material in earlier editions, including the first chapter, on the history of the field. Important modifications reflect major discoveries of the past decades. A historical perspective is maintained throughout. The reader is drawn into the process of discovery: starting with a phenomenon, finding plausible explanations and competing theories — and finally, the solution.The theory of magnetism is practically a metaphor for theoretical physics. The very first quantum many-body theory (Bethe's ansatz) was devised for magnetic chains, just as mean-field theory was invented a century ago by Weiss to explain Curie's Law.The first two chapters of this book are immensely readable, taking us from prehistory to the “spin valves” of the most recent past. Topics in subsequent chapters include: angular momenta and spin (Chapter 3), quantum theory of simple systems, followed by increasingly technical insights into ordered and random systems, thermal fluctuations, phase transitions, chaos and the like. Contemporary developments in nanotechnology now seek to take advantage of the electron's spin as well as of its charge. The time is not far off when nano-circuits made entirely of silicon exhibit such many-body properties as superconductivity or ferromagnetism — without any superconducting materials or magnetic ions being present. The reader of this book will be prepared for such exotic twenty-first century applications.Daniel C Mattis, BS, MS, PhD, Fellow of the American Physical Society (APS), is a frequent lecturer at research institutions and the author of several textbooks and numerous research articles. His expertise includes many-body theory, electrical conductivity, quantum theory of magnetism and most recently, nanotechnology. Prof. Mattis is on the editorial panel for high-temperature superconductivity of the International Journal of Modern Physics B and Modern Physics Letters B, both published by World Scientific. Currently serving as Professor in the Physics department at the University of Utah in Salt Lake City, Utah, USA, at various times he has been visiting Professor at Yale University (New Haven), State University of New York (Buffalo), Temple University (Philadelphia), and served as “Wei-Lun Visiting Professor” at the Chinese University of Hong Kong. A founding member of the “Few-Body Physics” section of the APS, he has also served as Chair of the standing committee of the APS for the “International Freedom of Scientists.”

An Object-Oriented Python Cookbook in Quantum Information Theory and Quantum Computing

An Object-Oriented Python Cookbook in Quantum Information Theory and Quantum Computing
Author: M.S. Ramkarthik
Publisher: CRC Press
Total Pages: 270
Release: 2022-09-30
Genre: Computers
ISBN: 100062692X

This first-of-a-kind textbook provides computational tools in state-of-the-art OOPs Python that are fundamental to quantum information, quantum computing, linear algebra and one-dimensional spin half condensed matter systems. Over 104 subroutines are included, and the codes are aided by mathematical comments to enhance clarity. Suitable for beginner and advanced readers alike, students and researchers will find this textbook to be a helpful guide and a compendium which they can readily use. Features Includes over 104 codes in OOPs Python, all of which can be used either as a standalone program or integrated with any other main program without any issues. Every parameter in the input, output and execution has been provided while keeping both beginner and advanced users in mind. The output of every program is explained thoroughly with detailed examples. Detailed mathematical commenting is done alongside the code which enhances clarity about the flow and working of the code.

Numerical Recipes in Quantum Information Theory and Quantum Computing

Numerical Recipes in Quantum Information Theory and Quantum Computing
Author: M.S. Ramkarthik
Publisher: CRC Press
Total Pages: 424
Release: 2021-09-12
Genre: Science
ISBN: 1000423794

This first of a kind textbook provides computational tools in Fortran 90 that are fundamental to quantum information, quantum computing, linear algebra and one dimensional spin half condensed matter systems. Over 160 subroutines are included, and the numerical recipes are aided by detailed flowcharts. Suitable for beginner and advanced readers alike, students and researchers will find this textbook to be a helpful guide and a compendium. Key Features: Includes 160 subroutines all of which can be used either as a standalone program or integrated with any other main program without any issues. Every parameter in the input, output and execution has been provided while keeping both beginner and advanced users in mind. The output of every program is explained thoroughly with detailed examples. A detailed dependency chart is provided for every recipe.

Solid State Physics

Solid State Physics
Author: David Schmool
Publisher: Mercury Learning and Information
Total Pages: 531
Release: 2016-07-26
Genre: Science
ISBN: 1944534431

Solid State Physics provides a broad introduction to some of the principal areas of the physical phenomena in solid materials and is aimed broadly at undergraduate students of physics and engineering related subjects. The physical properties of materials are intimately related to the crystalline symmetry of atoms as well as the atomic species present. This includes the electronic, mechanical, magnetic and optical properties of all materials. These subjects are treated in depth and provide the reader with the tools necessary for an understanding of the varied phenomena of materials. Particular emphasis is given to the reaction of materials to specific stimuli, such as the application of electric and magnetic fields. Nanotechnologies are based on the formation of nano-sized elements and structures. The final chapter of the book provides a broad introduction to the topic and uses some of the main tools of solid state physics to explain the behavior of nanomaterials and why they are of importance for future technologies. FEATURES: • Provides a broad introduction to the principal areas of the physical phenomena in solid materials • Includes the electronic, mechanical, magnetic and optical properties of all materials • Explains the behavior of nanomaterials and why they are of importance for future technologies

Solid State Physics

Solid State Physics
Author: Giuseppe Grosso
Publisher: Academic Press
Total Pages: 873
Release: 2013-10-17
Genre: Science
ISBN: 0123850312

Solid State Physics is a textbook for students of physics, material science, chemistry, and engineering. It is the state-of-the-art presentation of the theoretical foundations and application of the quantum structure of matter and materials. This second edition provides timely coverage of the most important scientific breakthroughs of the last decade (especially in low-dimensional systems and quantum transport). It helps build readers' understanding of the newest advances in condensed matter physics with rigorous yet clear mathematics. Examples are an integral part of the text, carefully designed to apply the fundamental principles illustrated in the text to currently active topics of research. Basic concepts and recent advances in the field are explained in tutorial style and organized in an intuitive manner. The book is a basic reference work for students, researchers, and lecturers in any area of solid-state physics. - Features additional material on nanostructures, giving students and lecturers the most significant features of low-dimensional systems, with focus on carbon allotropes - Offers detailed explanation of dissipative and nondissipative transport, and explains the essential aspects in a field, which is commonly overlooked in textbooks - Additional material in the classical and quantum Hall effect offers further aspects on magnetotransport, with particular emphasis on the current profiles - Gives a broad overview of the band structure of solids, as well as presenting the foundations of the electronic band structure. Also features reported with new and revised material, which leads to the latest research

The Physics of Solids

The Physics of Solids
Author: John Boyd Ketterson
Publisher: Oxford University Press
Total Pages: 1053
Release: 2016
Genre: Science
ISBN: 0198742908

This book offers a broad coverage of the physical properties of solids at fundamental level. The quantum mechanical origins that lead to a wide range of observed properties are discussed. The book also includes a modern treatment of unusual physical states.

Luttinger Model

Luttinger Model
Author: Vieri Mastropietro
Publisher: World Scientific
Total Pages: 312
Release: 2014
Genre: Science
ISBN: 9814520721

The Luttinger Model is the only model of many-fermion physics with legitimate claims to be both exactly and completely solvable. In several respects it plays the same role in many-body theory as does the 2D Ising model in statistical physics. Interest in the Luttinger model has increased steadily ever since its introduction half a century ago. The present volume starts with reprints of the seminal papers in which it was originally introduced and solved, and continues with several contributions setting out the landscape of the principal advances of the last fifty years and of prominent new directions.

Thermal Fluctuations And Relaxation Processes In Nanomagnets

Thermal Fluctuations And Relaxation Processes In Nanomagnets
Author: William T Coffey
Publisher: World Scientific
Total Pages: 709
Release: 2020-05-21
Genre: Science
ISBN: 9811217297

Presenting in a coherent and accessible fashion current results in nanomagnetism, this book constitutes a comprehensive, rigorous and readable account, from first principles of the classical and quantum theories underlying the dynamics of magnetic nanoparticles subject to thermal fluctuations.Starting with the Larmor-like equation for a giant spin, both the stochastic (Langevin) equation of motion of the magnetization and the associated evolution (Fokker-Planck) equation for the distribution function of the magnetization orientations of ferromagnetic nanoparticles (classical spins) in a heat bath are developed along with their solution (using angular momentum theory) for arbitrary magnetocrystalline-Zeeman energy. Thus, observables such as the magnetization reversal time, relaxation functions, dynamic susceptibilities, etc. are calculated and compared with the predictions of classical escape rate theory including in the most general case spin-torque-transfer. Regarding quantum effects, which are based on the reduced spin density matrix evolution equation in Hilbert space as is described at length, they are comprehensively treated via the Wigner-Stratonovich formulation of the quantum mechanics of spins via their orientational quasi-probability distributions on a classically meaningful representation space. Here, as suggested by the relevant Weyl symbols, the latter is the configuration space of the polar angles. Hence, one is led, by mapping the reduced density matrix equation onto that space, to a master equation for the quasi-probability evolution akin to the Fokker-Planck equation which may be solved in a similar way. Thus, one may study in a classical-like manner the evolution of observables with spin number ranging from an elementary spin to molecular clusters to the classical limit, viz. a nanoparticle. The entire discussion hinges on the one-to-one correspondence between polarization operators in Hilbert space and the spherical harmonics allied to concepts of spin coherent states long familiar in quantum optics.Catering for the reader with only a passing knowledge of statistical and quantum mechanics, the book serves as an introductory text on a complicated subject where the literature is remarkably sparse.

Materials Chemistry

Materials Chemistry
Author: Bradley D. Fahlman
Publisher: Springer
Total Pages: 817
Release: 2018-08-28
Genre: Technology & Engineering
ISBN: 9402412557

The 3rd edition of this successful textbook continues to build on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field — in a concise format. The 3rd edition offers significant updates throughout, with expanded sections on sustainability, energy storage, metal-organic frameworks, solid electrolytes, solvothermal/microwave syntheses, integrated circuits, and nanotoxicity. Most appropriate for Junior/Senior undergraduate students, as well as first-year graduate students in chemistry, physics, or engineering fields, Materials Chemistry may also serve as a valuable reference to industrial researchers. Each chapter concludes with a section that describes important materials applications, and an updated list of thought-provoking questions.

Statistical Mechanics Made Simple

Statistical Mechanics Made Simple
Author: Daniel Charles Mattis
Publisher: World Scientific
Total Pages: 358
Release: 2008
Genre: Science
ISBN: 9812779086

This second edition extends and improves on the first, illustrating through myriad examples, the principles and logic used in extending the simple laws of idealised Newtonian physics and quantum physics into the real world of noise and thermal fluctuations.