Theory of Incomplete Cylindrical Functions and their Applications

Theory of Incomplete Cylindrical Functions and their Applications
Author: Matest M. Agrest
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2013-11-11
Genre: Mathematics
ISBN: 364265021X

In preparing the English edition of this unique work, every effort has been made to obtain an easily read and lueid exposition of the material. This has frequently been done at the expense of a literal translation of the original text and it is felt that such liberties as have been taken with the author's language are justified in the interest of ease in readingo None of us pretends to be an authority in the Russian language, and we trust that the original intent of the authors has not been lost. The equations, whieh were for the most part taken verbatim from the original work, were eheeked only eursorily; obvious and previously noted errors have been eorreeted. Fortunately, the Russian and English mathematieal notations are generally in good agreement. An exeeption is the shortened abbreviations for the hyperbolie functions (e.g. sh for sinh), and the symbol Jm rather that Im to denote the imaginary part. As near as possible, these diserepaneies have been correeted. In preparing the Bibliography, works having an English equivalent have been translated into the English title, but in the text the referenee to the Russian work was retained, as it was impraetieal to attempt to find in eaeh ease the eorresponding eitation in the English edition. Authors' names and titles associated with purely Russian works have been transliterated as nearly as possible to the English equivalent, along with the equivalent English title of the work cited.

Advanced Studies in the Mathematical Theory of Scattering, Volume 3

Advanced Studies in the Mathematical Theory of Scattering, Volume 3
Author: Jean-Michel L. Bernard
Publisher: John Wiley & Sons
Total Pages: 372
Release: 2024-11-13
Genre: Science
ISBN: 1786308576

This book presents a collection of independent mathematical studies, describing the analytical reduction of complex generic problems in the theory of scattering and propagation of electromagnetic waves in the presence of imperfectly conducting objects. Their subjects include: a global method for scattering by a multimode plane; diffraction by an impedance curved wedge; scattering by impedance polygons; advanced properties of spectral functions in frequency and time domains; bianisotropic media and related coupling expressions; and exact and asymptotic reductions of surface radiation integrals. The methods developed here can be qualified as analytical when they lead to exact explicit expressions, or semi-analytical when they drastically reduce the mathematical complexity of studied problems. Therefore, they can be used in mathematical physics and engineering to analyse and model, but also in applied mathematics to calculate the scattered fields in electromagnetism for a low computational cost.

Non-Homogeneous Boundary Value Problems and Applications

Non-Homogeneous Boundary Value Problems and Applications
Author: Jacques Louis Lions
Publisher: Springer Science & Business Media
Total Pages: 323
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642653936

1. Our essential objective is the study of the linear, non-homogeneous problems: (1) Pu = I in CD, an open set in RN, (2) fQjtl = gj on am (boundary of m), lor on a subset of the boundm"J am 1

Differential Inclusions

Differential Inclusions
Author: J.-P. Aubin
Publisher: Springer Science & Business Media
Total Pages: 353
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642695124

A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable

Vorlesungen über die hypergeometrische Funktion

Vorlesungen über die hypergeometrische Funktion
Author: Felix Klein
Publisher: Springer Science & Business Media
Total Pages: 356
Release: 2013-04-17
Genre: Mathematics
ISBN: 3642678882

Bei der Herausgabe der KLEINschen Vorlesung über die hyper geometrische Funktion erschienen nur zwei Wege gangbar: Entweder eine durchgreifende Umarbeitung, auch im großen, oder eine möglichst weitgehende Erhaltung der ursprünglichen Form. Vor allem auch aus historischen Gründen wurde der letztere Weg beschritten. Daher ist die Anordnung des Stoffes erhalten geblieben; e, s ist nur, von kleinen Änderungen abgesehen, ein Exkurs über homogene Schreibweise aus der KLEINschen Vorlesung über lineare Differentialgleichungen ein gefügt, ferner sind die Schlußbemerkungen zur geometrischen Theorie im Falle komplexer Exponenten als durch die Arbeiten von F. SCHILLING überholt, weggelassen. Aus dem obengenannten Grunde sind beispiels weise auch Entwicklungen beibehalten worden, die heute schon dem Anfänger geläufig sind (etwa die Ausführungen über stereographische Projektion). In Rücksicht auf möglichste Erhaltung der KLEINschen Darstellung sind ferner Hinweise des Herausgebers auf inzwischen ge machte Fortschritte der Wissenschaft vom Texte getrennt als Anmerkun gen am Schluß zusammengestellt. Diese Hinweise erheben aber in keiner Weise den Anspruch auf Vollständigkeit. Bei der nicht zu um gehenden Revision des Textes im einzelnen ist, dem oben angegebenen Gesichtspunkt entsprechend, möglichste Wahrung des persönlichen KLEINschen Stils angestrebt. übrigens habe ich darauf Bedacht genommen, auch dem A nlänger die Lektüre durch Anmerkungen und durch Nachweise der KLEINschen Zitate zu erleichtern. Denn zweifellos bieten gerade diese Vorlesungen eine treffliche Ergänzung und Weiterführung dessen, was der Studierende mittleren Semesters an Geometrie und Funktionentheorie kennen gelernt hat.

Modular Units

Modular Units
Author: D. Kubert
Publisher: Springer Science & Business Media
Total Pages: 371
Release: 2013-06-29
Genre: Mathematics
ISBN: 1475717415

In the present book, we have put together the basic theory of the units and cuspidal divisor class group in the modular function fields, developed over the past few years. Let i) be the upper half plane, and N a positive integer. Let r(N) be the subgroup of SL (Z) consisting of those matrices == 1 mod N. Then r(N)\i) 2 is complex analytic isomorphic to an affine curve YeN), whose compactifi cation is called the modular curve X(N). The affine ring of regular functions on yeN) over C is the integral closure of C[j] in the function field of X(N) over C. Here j is the classical modular function. However, for arithmetic applications, one considers the curve as defined over the cyclotomic field Q(JlN) of N-th roots of unity, and one takes the integral closure either of Q[j] or Z[j], depending on how much arithmetic one wants to throw in. The units in these rings consist of those modular functions which have no zeros or poles in the upper half plane. The points of X(N) which lie at infinity, that is which do not correspond to points on the above affine set, are called the cusps, because of the way they look in a fundamental domain in the upper half plane. They generate a subgroup of the divisor class group, which turns out to be finite, and is called the cuspidal divisor class group.

Lectures from Markov Processes to Brownian Motion

Lectures from Markov Processes to Brownian Motion
Author: Kai Lai Chung
Publisher: Springer Science & Business Media
Total Pages: 248
Release: 2013-11-11
Genre: Mathematics
ISBN: 1475717768

This book evolved from several stacks of lecture notes written over a decade and given in classes at slightly varying levels. In transforming the over lapping material into a book, I aimed at presenting some of the best features of the subject with a minimum of prerequisities and technicalities. (Needless to say, one man's technicality is another's professionalism. ) But a text frozen in print does not allow for the latitude of the classroom; and the tendency to expand becomes harder to curb without the constraints of time and audience. The result is that this volume contains more topics and details than I had intended, but I hope the forest is still visible with the trees. The book begins at the beginning with the Markov property, followed quickly by the introduction of option al times and martingales. These three topics in the discrete parameter setting are fully discussed in my book A Course In Probability Theory (second edition, Academic Press, 1974). The latter will be referred to throughout this book as the Course, and may be considered as a general background; its specific use is limited to the mate rial on discrete parameter martingale theory cited in § 1. 4. Apart from this and some dispensable references to Markov chains as examples, the book is self-contained.

Functional Analysis

Functional Analysis
Author: Kosaku Yosida
Publisher: Springer Science & Business Media
Total Pages: 486
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662007819

The present book is based on lectures given by the author at the University of Tokyo during the past ten years. It is intended as a textbook to be studied by students on their own or to be used in a course on Functional Analysis, i. e. , the general theory of linear operators in function spaces together with salient features of its application to diverse fields of modern and classical analysis. Necessary prerequisites for the reading of this book are summarized, with or without proof, in Chapter 0 under titles: Set Theory, Topo logical Spaces, Measure Spaces and Linear Spaces. Then, starting with the chapter on Semi-norms, a general theory of Banach and Hilbert spaces is presented in connection with the theory of generalized functions of S. L. SOBOLEV and L. SCHWARTZ. While the book is primarily addressed to graduate students, it is hoped it might prove useful to research mathe maticians, both pure and applied. The reader may pass, e. g. , from Chapter IX (Analytical Theory of Semi-groups) directly to Chapter XIII (Ergodic Theory and Diffusion Theory) and to Chapter XIV (Integration of the Equation of Evolution). Such materials as "Weak Topologies and Duality in Locally Convex Spaces" and "Nuclear Spaces" are presented in the form of the appendices to Chapter V and Chapter X, respectively. These might be skipped for the first reading by those who are interested rather in the application of linear operators.

Topological Vector Spaces II

Topological Vector Spaces II
Author: Gottfried Köthe
Publisher: Springer Science & Business Media
Total Pages: 343
Release: 2012-12-06
Genre: Mathematics
ISBN: 1468494090

In the preface to Volume One I promised a second volume which would contain the theory of linear mappings and special classes of spaces im portant in analysis. It took me nearly twenty years to fulfill this promise, at least to some extent. To the six chapters of Volume One I added two new chapters, one on linear mappings and duality (Chapter Seven), the second on spaces of linear mappings (Chapter Eight). A glance at the Contents and the short introductions to the two new chapters will give a fair impression of the material included in this volume. I regret that I had to give up my intention to write a third chapter on nuclear spaces. It seemed impossible to include the recent deep results in this field without creating a great further delay. A substantial part of this book grew out of lectures I held at the Mathematics Department of the University of Maryland· during the academic years 1963-1964, 1967-1968, and 1971-1972. I would like to express my gratitude to my colleagues J. BRACE, S. GOLDBERG, J. HORVATH, and G. MALTESE for many stimulating and helpful discussions during these years. I am particularly indebted to H. JARCHOW (Ziirich) and D. KEIM (Frankfurt) for many suggestions and corrections. Both have read the whole manuscript. N. ADASCH (Frankfurt), V. EBERHARDT (Miinchen), H. MEISE (Diisseldorf), and R. HOLLSTEIN (Paderborn) helped with important observations.

Essays in Commutative Harmonic Analysis

Essays in Commutative Harmonic Analysis
Author: C. C. Graham
Publisher: Springer Science & Business Media
Total Pages: 483
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461299764

This book considers various spaces and algebras made up of functions, measures, and other objects-situated always on one or another locally compact abelian group, and studied in the light of the Fourier transform. The emphasis is on the objects themselves, and on the structure-in-detail of the spaces and algebras. A mathematician needs to know only a little about Fourier analysis on the commutative groups, and then may go many ways within the large subject of harmonic analysis-into the beautiful theory of Lie group representations, for example. But this book represents the tendency to linger on the line, and the other abelian groups, and to keep asking questions about the structures thereupon. That tendency, pursued since the early days of analysis, has defined a field of study that can boast of some impressive results, and in which there still remain unanswered questions of compelling interest. We were influenced early in our careers by the mathematicians Jean-Pierre Kahane, Yitzhak Katznelson, Paul Malliavin, Yves Meyer, Joseph Taylor, and Nicholas Varopoulos. They are among the many who have made the field a productive meeting ground of probabilistic methods, number theory, diophantine approximation, and functional analysis. Since the academic year 1967-1968, when we were visitors in Paris and Orsay, the field has continued to see interesting developments. Let us name a few. Sam Drury and Nicholas Varopoulos solved the union problem for Helson sets, by proving a remarkable theorem (2.1.3) which has surely not seen its last use.