Theory of Computation

Theory of Computation
Author: James L. Hein
Publisher: Jones & Bartlett Pub
Total Pages: 572
Release: 1996-01
Genre: Computers
ISBN: 9780867204971

Foundations of Computing

Foundations of Computing
Author: Thierry Scheurer
Publisher: Addison-Wesley Longman
Total Pages: 700
Release: 1994
Genre: Computers
ISBN:

Written for professionals learning the field of discrete mathematics, this book provides the necessary foundations of computer science without requiring excessive mathematical prerequisites. Using a balanced approach of theory and examples, software engineers will find it a refreshing treatment of applications in programming.

Computer Systems

Computer Systems
Author: Andrew James Herbert
Publisher: Springer Science & Business Media
Total Pages: 321
Release: 2006-05-07
Genre: Computers
ISBN: 0387218211

An invited collection of peer-reviewed papers surveying key areas of Roger Needham's distinguished research career at Cambridge University and Microsoft Research. From operating systems to distributed computing, many of the world's leading researchers provide insight into the latest concepts and theoretical insights--many of which are based upon Needham's pioneering research work. A critical collection of edited-survey research papers spanning the entire range of Roger Needham's distinguished scientific career, from operating systems to distributed computing and security. Many of the world's leading researchers survey their topics' latest developments and acknowledge the theoretical foundations of Needham's work. Introduction to book written by Rick Rashid, Director of Microsoft Research Worldwide.

Fundamentals of the Theory of Computation

Fundamentals of the Theory of Computation
Author: Raymond Greenlaw
Publisher: Morgan Kaufmann
Total Pages: 356
Release: 1998-05
Genre: Computers
ISBN: 155860474X

This innovative textbook presents the key foundational concepts for a one-semester undergraduate course in the theory of computation. It offers the most accessible and motivational course material available for undergraduate computer theory classes. Directed at undergraduates who may have difficulty understanding the relevance of the course to their future careers, the text helps make them more comfortable with the techniques required for the deeper study of computer science. The text motivates students by clarifying complex theory with many examples, exercises and detailed proofs.

Introduction to the Theory of Computation

Introduction to the Theory of Computation
Author: Michael Sipser
Publisher: Thomson/Course Technology
Total Pages: 437
Release: 2006
Genre: Computational complexity
ISBN: 9780619217648

"Intended as an upper-level undergraduate or introductory graduate text in computer science theory," this book lucidly covers the key concepts and theorems of the theory of computation. The presentation is remarkably clear; for example, the "proof idea," which offers the reader an intuitive feel for how the proof was constructed, accompanies many of the theorems and a proof. Introduction to the Theory of Computation covers the usual topics for this type of text plus it features a solid section on complexity theory--including an entire chapter on space complexity. The final chapter introduces more advanced topics, such as the discussion of complexity classes associated with probabilistic algorithms.

The Elements of Computing Systems

The Elements of Computing Systems
Author: Noam Nisan
Publisher:
Total Pages: 343
Release: 2008
Genre: Computers
ISBN: 0262640686

This title gives students an integrated and rigorous picture of applied computer science, as it comes to play in the construction of a simple yet powerful computer system.

Design Theory and Computer Science

Design Theory and Computer Science
Author: Subrata Dasgupta
Publisher: Cambridge University Press
Total Pages: 450
Release: 1991-05-16
Genre: Computers
ISBN: 0521390214

The author examines logic and methodology of design from the perspective of computer science. Computers provide the context for this examination both by discussion of the design process for hardware and software systems and by consideration of the role of computers in design in general. The central question posed by the author is whether or not we can construct a theory of design.

Funding a Revolution

Funding a Revolution
Author: National Research Council
Publisher: National Academies Press
Total Pages: 300
Release: 1999-02-11
Genre: Computers
ISBN: 0309062780

The past 50 years have witnessed a revolution in computing and related communications technologies. The contributions of industry and university researchers to this revolution are manifest; less widely recognized is the major role the federal government played in launching the computing revolution and sustaining its momentum. Funding a Revolution examines the history of computing since World War II to elucidate the federal government's role in funding computing research, supporting the education of computer scientists and engineers, and equipping university research labs. It reviews the economic rationale for government support of research, characterizes federal support for computing research, and summarizes key historical advances in which government-sponsored research played an important role. Funding a Revolution contains a series of case studies in relational databases, the Internet, theoretical computer science, artificial intelligence, and virtual reality that demonstrate the complex interactions among government, universities, and industry that have driven the field. It offers a series of lessons that identify factors contributing to the success of the nation's computing enterprise and the government's role within it.

Introduction to the Theory of Computation

Introduction to the Theory of Computation
Author: Michael Sipser
Publisher: Cengage Learning
Total Pages: 0
Release: 2012-06-27
Genre: Computers
ISBN: 9781133187790

Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Theory of Reversible Computing

Theory of Reversible Computing
Author: Kenichi Morita
Publisher: Springer
Total Pages: 463
Release: 2017-11-06
Genre: Computers
ISBN: 4431566066

This book describes reversible computing from the standpoint of the theory of automata and computing. It investigates how reversibility can be effectively utilized in computing. A reversible computing system is a “backward deterministic” system such that every state of the system has at most one predecessor. Although its definition is very simple, it is closely related to physical reversibility, one of the fundamental microscopic laws of Nature. Authored by the leading scientist on the subject, this book serves as a valuable reference work for anyone working in reversible computation or in automata theory in general. This work deals with various reversible computing models at several different levels, which range from the microscopic to the macroscopic, and aims to clarify how computation can be carried out efficiently and elegantly in these reversible computing models. Because the construction methods are often unique and different from those in the traditional methods, these computing models as well as the design methods provide new insights for future computing systems. Organized bottom-up, the book starts with the lowest scale of reversible logic elements and circuits made from them. This is followed by reversible Turing machines, the most basic computationally universal machines, and some other types of reversible automata such as reversible multi-head automata and reversible counter machines. The text concludes with reversible cellular automata for massively parallel spatiotemporal computation. In order to help the reader have a clear understanding of each model, the presentations of all different models follow a similar pattern: the model is given in full detail, a short informal discussion is held on the role of different elements of the model, and an example with illustrations follows each model.