Moment Functions In Image Analysis - Theory And Applications

Moment Functions In Image Analysis - Theory And Applications
Author: R Mukundan
Publisher: World Scientific
Total Pages: 167
Release: 1998-09-02
Genre: Computers
ISBN: 9814495948

This book is a comprehensive treatise on the theory and applications of moment functions in image analysis. Moment functions are widely used in various realms of computer vision and image processing. Numerous algorithms and techniques have been developed using image moments, in the areas of pattern recognition, object identification, three-dimensional object pose estimation, robot sensing, image coding and reconstruction. This book provides a compilation of the theoretical aspects related to different types of moment functions, and their applications in the above areas.The book is organized into two parts. The first part discusses the fundamental concepts behind important moments such as geometric moments, complex moments, Legendre moments, Zernike moments, and moment tensors. Most of the commonly used properties of moment functions and the mathematical framework for the derivation of basic theorems and results are discussed in detail. This includes the derivation of moment invariants, implementation aspects of moments, transform properties, and fast methods for computing the moment functions for both binary and gray-level images. The second part presents the key application areas of moments such as pattern recognition, object identification, image-based pose estimation, edge detection, clustering, segmentation, coding and reconstruction. Important algorithms in each of these areas are discussed. A comprehensive list of bibliographical references on image moments is also included.

Front-End Vision and Multi-Scale Image Analysis

Front-End Vision and Multi-Scale Image Analysis
Author: Bart M. Haar Romeny
Publisher: Springer Science & Business Media
Total Pages: 470
Release: 2008-10-24
Genre: Computers
ISBN: 140208840X

Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.

Image Processing and Analysis with Graphs

Image Processing and Analysis with Graphs
Author: Olivier Lezoray
Publisher: CRC Press
Total Pages: 570
Release: 2017-07-12
Genre: Computers
ISBN: 1439855080

Covering the theoretical aspects of image processing and analysis through the use of graphs in the representation and analysis of objects, Image Processing and Analysis with Graphs: Theory and Practice also demonstrates how these concepts are indispensible for the design of cutting-edge solutions for real-world applications. Explores new applications in computational photography, image and video processing, computer graphics, recognition, medical and biomedical imaging With the explosive growth in image production, in everything from digital photographs to medical scans, there has been a drastic increase in the number of applications based on digital images. This book explores how graphs—which are suitable to represent any discrete data by modeling neighborhood relationships—have emerged as the perfect unified tool to represent, process, and analyze images. It also explains why graphs are ideal for defining graph-theoretical algorithms that enable the processing of functions, making it possible to draw on the rich literature of combinatorial optimization to produce highly efficient solutions. Some key subjects covered in the book include: Definition of graph-theoretical algorithms that enable denoising and image enhancement Energy minimization and modeling of pixel-labeling problems with graph cuts and Markov Random Fields Image processing with graphs: targeted segmentation, partial differential equations, mathematical morphology, and wavelets Analysis of the similarity between objects with graph matching Adaptation and use of graph-theoretical algorithms for specific imaging applications in computational photography, computer vision, and medical and biomedical imaging Use of graphs has become very influential in computer science and has led to many applications in denoising, enhancement, restoration, and object extraction. Accounting for the wide variety of problems being solved with graphs in image processing and computer vision, this book is a contributed volume of chapters written by renowned experts who address specific techniques or applications. This state-of-the-art overview provides application examples that illustrate practical application of theoretical algorithms. Useful as a support for graduate courses in image processing and computer vision, it is also perfect as a reference for practicing engineers working on development and implementation of image processing and analysis algorithms.

Machine Learning for Audio, Image and Video Analysis

Machine Learning for Audio, Image and Video Analysis
Author: Francesco Camastra
Publisher: Springer
Total Pages: 564
Release: 2015-07-21
Genre: Computers
ISBN: 144716735X

This second edition focuses on audio, image and video data, the three main types of input that machines deal with when interacting with the real world. A set of appendices provides the reader with self-contained introductions to the mathematical background necessary to read the book. Divided into three main parts, From Perception to Computation introduces methodologies aimed at representing the data in forms suitable for computer processing, especially when it comes to audio and images. Whilst the second part, Machine Learning includes an extensive overview of statistical techniques aimed at addressing three main problems, namely classification (automatically assigning a data sample to one of the classes belonging to a predefined set), clustering (automatically grouping data samples according to the similarity of their properties) and sequence analysis (automatically mapping a sequence of observations into a sequence of human-understandable symbols). The third part Applications shows how the abstract problems defined in the second part underlie technologies capable to perform complex tasks such as the recognition of hand gestures or the transcription of handwritten data. Machine Learning for Audio, Image and Video Analysis is suitable for students to acquire a solid background in machine learning as well as for practitioners to deepen their knowledge of the state-of-the-art. All application chapters are based on publicly available data and free software packages, thus allowing readers to replicate the experiments.

Mathematical Morphology and Its Applications to Image Processing

Mathematical Morphology and Its Applications to Image Processing
Author: Jean Serra
Publisher: Springer Science & Business Media
Total Pages: 391
Release: 2012-12-06
Genre: Computers
ISBN: 9401110409

Mathematical morphology (MM) is a theory for the analysis of spatial structures. It is called morphology since it aims at analysing the shape and form of objects, and it is mathematical in the sense that the analysis is based on set theory, topology, lattice algebra, random functions, etc. MM is not only a theory, but also a powerful image analysis technique. The purpose of the present book is to provide the image analysis community with a snapshot of current theoretical and applied developments of MM. The book consists of forty-five contributions classified by subject. It demonstrates a wide range of topics suited to the morphological approach.

Image Processing

Image Processing
Author: Tinku Acharya
Publisher: John Wiley & Sons
Total Pages: 454
Release: 2005-10-03
Genre: Computers
ISBN: 0471745782

Image processing-from basics to advanced applications Learn how to master image processing and compression with this outstanding state-of-the-art reference. From fundamentals to sophisticated applications, Image Processing: Principles and Applications covers multiple topics and provides a fresh perspective on future directions and innovations in the field, including: * Image transformation techniques, including wavelet transformation and developments * Image enhancement and restoration, including noise modeling and filtering * Segmentation schemes, and classification and recognition of objects * Texture and shape analysis techniques * Fuzzy set theoretical approaches in image processing, neural networks, etc. * Content-based image retrieval and image mining * Biomedical image analysis and interpretation, including biometric algorithms such as face recognition and signature verification * Remotely sensed images and their applications * Principles and applications of dynamic scene analysis and moving object detection and tracking * Fundamentals of image compression, including the JPEG standard and the new JPEG2000 standard Additional features include problems and solutions with each chapter to help you apply the theory and techniques, as well as bibliographies for researching specialized topics. With its extensive use of examples and illustrative figures, this is a superior title for students and practitioners in computer science, wireless and multimedia communications, and engineering.

Image Processing and Analysis

Image Processing and Analysis
Author: Tony F. Chan
Publisher: SIAM
Total Pages: 414
Release: 2005-09-01
Genre: Computers
ISBN: 089871589X

This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.

Machine Learning in Image Analysis and Pattern Recognition

Machine Learning in Image Analysis and Pattern Recognition
Author: Munish Kumar
Publisher: MDPI
Total Pages: 112
Release: 2021-09-08
Genre: Technology & Engineering
ISBN: 3036517146

This book is to chart the progress in applying machine learning, including deep learning, to a broad range of image analysis and pattern recognition problems and applications. In this book, we have assembled original research articles making unique contributions to the theory, methodology and applications of machine learning in image analysis and pattern recognition.

Theory & Applications of Image Analysis

Theory & Applications of Image Analysis
Author: P. Johansen
Publisher: World Scientific
Total Pages: 368
Release: 1992
Genre: Technology & Engineering
ISBN: 9789810209452

This book contains 31 papers carefully selected from among those presented at the 7th Scandinavian Conference on Image Analysis. The authors have extended their papers to give a more in-depth discussion of the theory, or of the experimental validation of the method they have proposed. The topics covered are current and wide-ranging and include both 2D- and 3D-vision, and low to high level vision.

Spatio-Temporal Image Processing

Spatio-Temporal Image Processing
Author: Bernd Jähne
Publisher: Springer Science & Business Media
Total Pages: 228
Release: 1993-11-10
Genre: Technology & Engineering
ISBN: 9783540574187

Image sequence processing is becoming a tremendous tool to analyze spatio-temporal data in all areas of natural science. It is the key to studythe dynamics of of complex scientific phenomena. Methods from computer science and the field of application are merged establishing new interdisciplinary research areas. This monograph emerged from scientific applications and thus is an example for such an interdisciplinaryapproach. It is addressed both to computer scientists and to researchers from other fields who are applying methods of computer vision. The results presented are mostly from environmental physics (oceanography) but they will be illuminating and helpful for researchers applying similar methods in other areas.