Theory And Methods Of Vector Optimization Volume One
Download Theory And Methods Of Vector Optimization Volume One full books in PDF, epub, and Kindle. Read online free Theory And Methods Of Vector Optimization Volume One ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Yu. K. Mashunin |
Publisher | : Cambridge Scholars Publishing |
Total Pages | : 290 |
Release | : 2021-09-30 |
Genre | : Mathematics |
ISBN | : 1527575489 |
This second volume presents research in the field of the mathematical model operation of economic systems, again using as a basis the theory and methods of vector optimization. This volume includes three chapters. The first chapter deals with issues related to the theory of the company, modeling and decision-making, while the second deals with issues related to modeling and decision-making in market systems. The third chapter deals with issues related to modeling, forecasting and decision-making.
Author | : Yu. K. Mashunin |
Publisher | : Cambridge Scholars Publishing |
Total Pages | : 195 |
Release | : 2020-03-24 |
Genre | : Mathematics |
ISBN | : 1527548775 |
This first volume presents the theory and methods of solving vector optimization problems, using initial definitions that include axioms and the optimality principle. This book proves, mathematically, that the result it presents for the solution of the vector (multi-criteria) problem is the optimal outcome, and, as such, solves the problem of vector optimization for the first time. It shows that applied methods of solving vector optimization problems can be used by researchers in modeling and simulating the development of economic systems and technical (engineering) systems.
Author | : Dinh The Luc |
Publisher | : Springer Science & Business Media |
Total Pages | : 183 |
Release | : 2012-12-06 |
Genre | : Business & Economics |
ISBN | : 3642502806 |
These notes grew out of a series of lectures given by the author at the Univer sity of Budapest during 1985-1986. Additional results have been included which were obtained while the author was at the University of Erlangen-Niirnberg under a grant of the Alexander von Humboldt Foundation. Vector optimization has two main sources coming from economic equilibrium and welfare theories of Edgeworth (1881) and Pareto (1906) and from mathemat ical backgrounds of ordered spaces of Cantor (1897) and Hausdorff (1906). Later, game theory of Borel (1921) and von Neumann (1926) and production theory of Koopmans (1951) have also contributed to this area. However, only in the fifties, after the publication of Kuhn-Tucker's paper (1951) on the necessary and sufficient conditions for efficiency, and of Deubreu's paper (1954) on valuation equilibrium and Pareto optimum, has vector optimization been recognized as a mathematical discipline. The stretching development of this field began later in the seventies and eighties. Today there are a number of books on vector optimization. Most of them are concerned with the methodology and the applications. Few of them offer a systematic study of the theoretical aspects. The aim of these notes is to pro vide a unified background of vector optimization,with the emphasis on nonconvex problems in infinite dimensional spaces ordered by convex cones. The notes are arranged into six chapters. The first chapter presents prelim inary material.
Author | : Johannes Jahn |
Publisher | : Springer Science & Business Media |
Total Pages | : 471 |
Release | : 2013-06-05 |
Genre | : Business & Economics |
ISBN | : 3540248285 |
In vector optimization one investigates optimal elements such as min imal, strongly minimal, properly minimal or weakly minimal elements of a nonempty subset of a partially ordered linear space. The prob lem of determining at least one of these optimal elements, if they exist at all, is also called a vector optimization problem. Problems of this type can be found not only in mathematics but also in engineer ing and economics. Vector optimization problems arise, for exam ple, in functional analysis (the Hahn-Banach theorem, the lemma of Bishop-Phelps, Ekeland's variational principle), multiobjective pro gramming, multi-criteria decision making, statistics (Bayes solutions, theory of tests, minimal covariance matrices), approximation theory (location theory, simultaneous approximation, solution of boundary value problems) and cooperative game theory (cooperative n player differential games and, as a special case, optimal control problems). In the last decade vector optimization has been extended to problems with set-valued maps. This new field of research, called set optimiza tion, seems to have important applications to variational inequalities and optimization problems with multivalued data. The roots of vector optimization go back to F. Y. Edgeworth (1881) and V. Pareto (1896) who has already given the definition of the standard optimality concept in multiobjective optimization. But in mathematics this branch of optimization has started with the leg endary paper of H. W. Kuhn and A. W. Tucker (1951). Since about v Vl Preface the end of the 60's research is intensively made in vector optimization.
Author | : David G. Luenberger |
Publisher | : John Wiley & Sons |
Total Pages | : 348 |
Release | : 1997-01-23 |
Genre | : Technology & Engineering |
ISBN | : 9780471181170 |
Engineers must make decisions regarding the distribution of expensive resources in a manner that will be economically beneficial. This problem can be realistically formulated and logically analyzed with optimization theory. This book shows engineers how to use optimization theory to solve complex problems. Unifies the large field of optimization with a few geometric principles. Covers functional analysis with a minimum of mathematics. Contains problems that relate to the applications in the book.
Author | : Guang-ya Chen |
Publisher | : Springer Science & Business Media |
Total Pages | : 324 |
Release | : 2005-07-13 |
Genre | : Business & Economics |
ISBN | : 9783540212898 |
This book is devoted to vector or multiple criteria approaches in optimization. Topics covered include: vector optimization, vector variational inequalities, vector variational principles, vector minmax inequalities and vector equilibrium problems. In particular, problems with variable ordering relations and set-valued mappings are treated. The nonlinear scalarization method is extensively used throughout the book to deal with various vector-related problems. The results presented are original and should be interesting to researchers and graduates in applied mathematics and operations research. Readers will benefit from new methods and ideas for handling multiple criteria decision problems.
Author | : Andreas Löhne |
Publisher | : Springer Science & Business Media |
Total Pages | : 211 |
Release | : 2011-05-25 |
Genre | : Business & Economics |
ISBN | : 3642183514 |
The theory of Vector Optimization is developed by a systematic usage of infimum and supremum. In order to get existence and appropriate properties of the infimum, the image space of the vector optimization problem is embedded into a larger space, which is a subset of the power set, in fact, the space of self-infimal sets. Based on this idea we establish solution concepts, existence and duality results and algorithms for the linear case. The main advantage of this approach is the high degree of analogy to corresponding results of Scalar Optimization. The concepts and results are used to explain and to improve practically relevant algorithms for linear vector optimization problems.
Author | : Raghu Nandan Sengupta |
Publisher | : CRC Press |
Total Pages | : 936 |
Release | : 2016-11-30 |
Genre | : Business & Economics |
ISBN | : 1351727400 |
This handbook is an endeavour to cover many current, relevant, and essential topics related to decision sciences in a scientific manner. Using this handbook, graduate students, researchers, as well as practitioners from engineering, statistics, sociology, economics, etc. will find a new and refreshing paradigm shift as to how these topics can be put to use beneficially. Starting from the basics to advanced concepts, authors hope to make the readers well aware of the different theoretical and practical ideas, which are the focus of study in decision sciences nowadays. It includes an excellent bibliography/reference/journal list, information about a variety of datasets, illustrated pseudo-codes, and discussion of future trends in research. Covering topics ranging from optimization, networks and games, multi-objective optimization, inventory theory, statistical methods, artificial neural networks, times series analysis, simulation modeling, decision support system, data envelopment analysis, queueing theory, etc., this reference book is an attempt to make this area more meaningful for varied readers. Noteworthy features of this handbook are in-depth coverage of different topics, solved practical examples, unique datasets for a variety of examples in the areas of decision sciences, in-depth analysis of problems through colored charts, 3D diagrams, and discussions about software.
Author | : Michiel Hazewinkel |
Publisher | : Springer Science & Business Media |
Total Pages | : 595 |
Release | : 2012-12-06 |
Genre | : Mathematics |
ISBN | : 9401512884 |
This is the first Supplementary volume to Kluwer's highly acclaimed Encyclopaedia of Mathematics. This additional volume contains nearly 600 new entries written by experts and covers developments and topics not included in the already published 10-volume set. These entries have been arranged alphabetically throughout. A detailed index is included in the book. This Supplementary volume enhances the existing 10-volume set. Together, these eleven volumes represent the most authoritative, comprehensive up-to-date Encyclopaedia of Mathematics available.
Author | : Joachim Gwinner |
Publisher | : CRC Press |
Total Pages | : 334 |
Release | : 2021-12-21 |
Genre | : Mathematics |
ISBN | : 1351857665 |
Uncertainty Quantification (UQ) is an emerging and extremely active research discipline which aims to quantitatively treat any uncertainty in applied models. The primary objective of Uncertainty Quantification in Variational Inequalities: Theory, Numerics, and Applications is to present a comprehensive treatment of UQ in variational inequalities and some of its generalizations emerging from various network, economic, and engineering models. Some of the developed techniques also apply to machine learning, neural networks, and related fields. Features First book on UQ in variational inequalities emerging from various network, economic, and engineering models Completely self-contained and lucid in style Aimed for a diverse audience including applied mathematicians, engineers, economists, and professionals from academia Includes the most recent developments on the subject which so far have only been available in the research literature