Theoretical And Experimental Studies Of Ternary And Quaternary Nitrides For Machining And Thermoelectric Materials
Download Theoretical And Experimental Studies Of Ternary And Quaternary Nitrides For Machining And Thermoelectric Materials full books in PDF, epub, and Kindle. Read online free Theoretical And Experimental Studies Of Ternary And Quaternary Nitrides For Machining And Thermoelectric Materials ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Robert Pilemalm |
Publisher | : Linköping University Electronic Press |
Total Pages | : 50 |
Release | : 2019-04-02 |
Genre | : Non-Classifiable |
ISBN | : 9176851141 |
Nitrides are used as coatings and thin films for a wide range of applications. The study and use of nitrides in the recent decades have shifted towards ternary, quaternary or even higher order (complex) nitrides. There is an interest to use ternary and quaternary nitrides for machining and thermoelectric materials, because it gives the possibility to choose composition and thereby design the materials properties. This thesis presents research results on TiAlN and and TiAlN-based coatings that are used as hard coatings for machining and on ternary scandium nitrides that are of interest for thin films for thermoelectric applications. The high-pressure high-temperature behavior of cubic TiAlN deposited on cubic boron nitride has been experimentally studied. It has been shown that the spinodal decomposition, which means decomposition into cubic domains enriched in TiN and AlN, is delayed as a result of high pressure compared to ambient pressure. No chemical interaction between coating and substrate occurs. TiZrAlN has been theoretically and experimentally studied at high temperature. The results show that the when Zr-content is decreased and the Al-content is increased the decomposition route changes from nucleation and growth to spinodal decomposition. The microstructure evolution with temperature depends on the initial composition. In the case where the decompositon starts with only spinodal decomposition the microstructure at 1100 °C consists of domains that are larger than in the case where the decomposition occurs by nucleation and growth. ScMN2 (M=V, Nb, Ta) phases have been experimentally demonstrated for M=Nb and Ta in a few studies, but have not been much investigated. In this theseis, their crystal structure, stability, elastic properties, electronic structure and thermoelectric properties have been studied. At 0 K and 0 GPa it has been shown that these three phases are thermodynamically and elastically stable. Additionally, these are narrow-bandgap semiconductors and their thermoelectric properties can be tuned by doping. Pressure has a stabilizing effect on these structures. When pressure increases from 0-150 GPa the elastic constants and moduli increases in the range 53-317 %.
Author | : Michel W. Barsoum |
Publisher | : John Wiley & Sons |
Total Pages | : 436 |
Release | : 2013-11-13 |
Genre | : Technology & Engineering |
ISBN | : 3527654607 |
In this comprehensive yet compact monograph, Michel W. Barsoum, one of the pioneers in the field and the leading figure in MAX phase research, summarizes and explains, from both an experimental and a theoretical viewpoint, all the features that are necessary to understand and apply these new materials. The book covers elastic, electrical, thermal, chemical and mechanical properties in different temperature regimes. By bringing together, in a unifi ed, self-contained manner, all the information on MAX phases hitherto only found scattered in the journal literature, this one-stop resource offers researchers and developers alike an insight into these fascinating materials.
Author | : Mohammad Amin Gharavi |
Publisher | : Linköping University Electronic Press |
Total Pages | : 77 |
Release | : 2019-11-18 |
Genre | : |
ISBN | : 9179299644 |
Thermoelectricity transforms temperature gradients across thermoelectric material into an external voltage through a phenomenon known as the Seebeck effect. This property has resulted in niche applications such as solid-state cooling for electronic and optoelectronic devices which exclude the need for a coolant or any moving parts and long-lasting, maintenance-free radioisotope thermoelectric generators used for deep-space exploration. However, the high price and low efficiency of thermoelectric generators have prompted scientists to search for new materials and/or methods to improve the efficiency of the already existing ones. Thermoelectric efficiency is governed by the dimensionless figure of merit ????, which depends on the electrical conductivity, thermal conductivity and Seebeck coefficient value of the material and has rarely surpassed unity. In order to address these issues, research conducted on early transition metal nitrides spearheaded by cubic scandium nitride (ScN) thin films showed promising results with high power factors close to 3000 ?Wm?1K?2 at 500 °C. These results are the main motivation behind my thesis where the conducted research is separated into two different routes: • the synthesis and characterization of chromium nitride thin films and its alloys • the study of hypothetical ternary nitrides equivalent to scandium nitride Rock-salt cubic chromium nitride (CrN) deposited in the form of thin films by reactive magnetron sputtering was chosen for its large Seebeck coefficient of approximately -200 ?V/K and low thermal conductivity between 2 and 4 Wm?1K?1. The results show that CrN in single crystal form has a low electrical resistivity below 1 m?cm, a Seebeck coefficient value of -230 ?V/K and a power factor close to 5000 ?Wm?1K?2 at room temperature. These promising results could lead to CrN based thermoelectric modules which are cheaper and more stable compared to traditional thermoelectric material such as bismuth telluride (Bi2Te3) and lead telluride (PbTe). Although cubic CrN has been shown to be a promising material for research with a large power factor, the electrical resistivity limits applications in pure form as the ???? is estimated to be slightly below 0.5. To overcome this issue, I enhanced the thermoelectric power-factor of CrN by alloying it with a conductor, Rock-salt cubic vanadium nitride (VN). VN is a suitable choice as both materials share the same crystal structure and have almost equal lattice constants. Through deposition at 720 °C, where a small amount of VN (less than 5%) and Cr2N is introduced into the film, a reduced electrical resistivity averaged around 0.8 × 10-3 ?cm, Seebeck coefficient value of 270 ?V/K and a power-factor of 9.1 × 10-3 W/mK2 is measured at room temperature, which surpasses the thermoelectric properties of Bi2Te3. Hexagonal dichromium nitride (Cr2N) nano-inclusions increase the charge carrier concentration and act as phonon scattering sites. Single crystal Cr2N was also studied separately, as it shows interesting elastic-plastic mechanical properties and high resistance to oxidation at high temperatures for long periods of time. In the second part of this thesis, hypothetical ternary nitrides equivalent to ScN are investigated for their prospective thermoelectric properties. Scandium nitride has a relatively high thermal conductivity value (close to 10 Wm?1K?1), resulting in a low ????. A hypothetical ternary equivalent to ScN may have a similar electronic band structure and large power factor, but with a lower thermal conductivity value leading to better thermoelectric properties. Thus, the elements magnesium, titanium, zirconium, and hafnium were chosen for this purpose. DFT calculations were used to simulate TiMgN2, ZrMgN2 and HfMgN2. The results show the MeMgN2 stoichiometry to be stable, with two rivaling crystal structures: trigonal NaCrS2 and monoclinic LiUN2. The calculated electronic band structure of these compounds shows a direct band-gap for the monoclinic and an indirect band-gap for the trigonal crystal structures. These findings, coupled with predicted Seebeck coefficient values, encourages actual synthesis of such materials. DFT calculations were also used to study (Zr, Mg)N and (Hf, Mg)N alloys based on the SQS model. The transition temperature between the ordered monoclinic structure of ZrMgN2 and HfMgN2 and the disordered (Zr, Mg)N and (Hf, Mg)N alloys is calculated to be approximately 800 K and 1050 K respectively. Density of State (DoS) calculations show that similar to (Ti, Mg)N, (Zr, Mg)N and (Hf, Mg)N are also semiconducting. The thermoelectric properties of both compounds are also predicted, and that in the range of a moderate change in the Fermi level, high Seebeck coefficient values at room temperature can be achieved. Finally, in order to complete the mentioned study on hypothetical ternaries, I deposited (Ti, Mg)N thin film alloys by reactive magnetron sputtering. These films, which were deposited at 400 °C, are porous and are crystallized in the rocksalt cubic structure. As-deposited films show an electrical resistivity of 150 m?cm and a Seebeck coefficient of -25 ?V/K, which shows semiconducting properties. In order to initiate a phase transformation, these films when annealed at approximately 800 °C, where nano-inclusions of a titanium/magnesium oxynitride are formed in a LiTiO2-type superstructure are identified by XRD and TEM analysis.
Author | : Saim Memon |
Publisher | : BoD – Books on Demand |
Total Pages | : 142 |
Release | : 2019-10-30 |
Genre | : Science |
ISBN | : 1789845289 |
Advanced Thermoelectric Materials for Energy Harvesting Applications is a research-intensive textbook covering the fundamentals of thermoelectricity and the process of converting heat energy into electrical energy. It covers the design, implementation, and performance of existing and advanced thermoelectric materials. Chapters examine such topics as organic/inorganic thermoelectric materials, performance and behaviors of thermoelectric devices, and energy harvesting applications of thermoelectric devices.
Author | : Jaime Andres Perez Taborda |
Publisher | : BoD – Books on Demand |
Total Pages | : 288 |
Release | : 2019-01-03 |
Genre | : Technology & Engineering |
ISBN | : 1789848709 |
The field of coatings and thin-film technologies is rapidly advancing to keep up with new uses for semiconductor, optical, tribological, thermoelectric, solar, security, and smart sensing applications, among others. In this sense, thin-film coatings and structures are increasingly sophisticated with more specific properties, new geometries, large areas, the use of heterogeneous materials and flexible and rigid coating substrates to produce thin-film structures with improved performance and properties in response to new challenges that the industry presents. This book aims to provide the reader with a complete overview of the current state of applications and developments in thin-film technology, discussing applications, health and safety in thin films, and presenting reviews and experimental results of recognized experts in the area of coatings and thin-film technologies.
Author | : Michael C. Gao |
Publisher | : Springer |
Total Pages | : 524 |
Release | : 2016-04-27 |
Genre | : Technology & Engineering |
ISBN | : 3319270133 |
This book provides a systematic and comprehensive description of high-entropy alloys (HEAs). The authors summarize key properties of HEAs from the perspective of both fundamental understanding and applications, which are supported by in-depth analyses. The book also contains computational modeling in tackling HEAs, which help elucidate the formation mechanisms and properties of HEAs from various length and time scales.
Author | : Mohammad Mansoob Khan |
Publisher | : Elsevier |
Total Pages | : 378 |
Release | : 2021-04-07 |
Genre | : Technology & Engineering |
ISBN | : 0128209178 |
Chalcogenide-Based Nanomaterials as Photocatalysts deals with the different types of chalcogenide-based photocatalytic reactions, covering the fundamental concepts of photocatalytic reactions involving chalcogenides for a range of energy and environmental applications. Sections focus on nanostructure control, synthesis methods, activity enhancement strategies, environmental applications, and perspectives of chalcogenide-based nanomaterials. The book offers guidelines for designing new chalcogenide-based nanoscale photocatalysts at low cost and high efficiency for efficient utilization of solar energy in the areas of energy production and environment remediation. - Provides information on the development of novel chalcogenide-based nanomaterials - Outlines the fundamentals of chalcogenides-based photocatalysis - Includes techniques for heterogeneous catalysis based on chalcogenide-based nanomaterials
Author | : B.S. Murty |
Publisher | : Elsevier |
Total Pages | : 390 |
Release | : 2019-03-16 |
Genre | : Technology & Engineering |
ISBN | : 0128160683 |
High-Entropy Alloys, Second Edition provides a complete review of the current state of the field of high entropy alloys (HEA). Building upon the first edition, this fully updated release includes new theoretical understandings of these materials, highlighting recent developments on modeling and new classes of HEAs, such as Eutectic HEAs and Dual phase HEAs. Due to their unique properties, high entropy alloys have attracted considerable attention from both academics and technologists. This book presents the fundamental knowledge, the spectrum of various alloy systems and their characteristics, key focus areas, and the future scope of the field in terms of research and technological applications. - Provides an up-to-date, comprehensive understanding on the current status of HEAs in terms of theoretical understanding and modeling efforts - Gives a complete idea on alloy design criteria of various classes of HEAs developed so far - Discusses the microstructure property correlations in HEAs in terms of structural and functional properties - Presents a comparison of HEAs with other multicomponent systems, like intermetallics and bulk metallic glasses
Author | : R. Ciach |
Publisher | : Springer Science & Business Media |
Total Pages | : 538 |
Release | : 1998-09-30 |
Genre | : Technology & Engineering |
ISBN | : 9780792352228 |
An expert exposition of the structural and mechanical properties of light alloys and composites, bridging the gap between scientists and industrial engineers in its consideration of advanced light materials, their structure, properties, technology and application. Includes basic problems of alloy constitution and phase transformations. The aluminium alloys are the main topic of the book, consideration being given to their properties, casting technology, thermomechanical treatment and structure. Attention is also given to the magnesium alloys, particularly those having rare earth metal constituents. Both commercial titanium alloys and intermetallic compounds are discussed, as are metallic composites. The latest engineering techniques are discussed in both theoretical and practical terms.
Author | : Meiyong Liao |
Publisher | : Elsevier |
Total Pages | : 506 |
Release | : 2019-06-18 |
Genre | : Technology & Engineering |
ISBN | : 0128172568 |
Ultra-wide Bandgap Semiconductors (UWBG) covers the most recent progress in UWBG materials, including sections on high-Al-content AlGaN, diamond, B-Ga2O3, and boron nitrides. The coverage of these materials is comprehensive, addressing materials growth, physics properties, doping, device design, fabrication and performance. The most relevant and important applications are covered, including power electronics, RF electronics and DUV optoelectronics. There is also a chapter on novel structures based on UWBG, such as the heterojunctions, the low-dimensional structures, and their devices. This book is ideal for materials scientists and engineers in academia and R&D searching for materials superior to silicon carbide and gallium nitride. - Provides a one-stop resource on the most promising ultra-wide bandgap semiconducting materials, including high-Al-content AlGaN, diamond, ß-Ga2O3, boron nitrides, and low-dimensional materials - Presents comprehensive coverage, from materials growth and properties, to device design, fabrication and performance - Features the most relevant applications, including power electronics, RF electronics and DUV optoelectronics