The Structure and Properties of Color Spaces and the Representation of Color Images

The Structure and Properties of Color Spaces and the Representation of Color Images
Author: Eric Dubois
Publisher: Springer Nature
Total Pages: 111
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031022467

This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human viewers, often called Grassmann's laws, and developing the resulting vector space formulation. However, once the essential defining element of this vector space is identified, it can be extended to other color spaces, perhaps for different creatures and devices, and dimensions other than three. The CIE spaces are presented as main examples of color spaces. Many properties of the color space are examined. Once the vector space formulation is established, various useful decompositions of the space can be established. The first such decomposition is based on luminance, a measure of the relative brightness of a color. This leads to a direct-sum decomposition of color space where a two-dimensional subspace identifies the chromatic attribute, and a third coordinate provides the luminance. A different decomposition involving a projective space of chromaticity classes is then presented. Finally, it is shown how the three types of color deficiencies present in some groups of humans leads to a direct-sum decomposition of three one-dimensional subspaces that are associated with the three types of cone photoreceptors in the human retina. Next, a few specific linear and nonlinear color representations are presented. The color spaces of two digital cameras are also described. Then the issue of transformations between different color spaces is addressed. Finally, these ideas are applied to signal and system theory for color images. This is done using a vector signal approach where a general linear system is represented by a three-by-three system matrix. The formulation is applied to both continuous and discrete space images, and specific problems in color filter array sampling and displays are presented for illustration. The book is mainly targeted to researchers and graduate students in fields of signal processing related to any aspect of color imaging.

The Structure and Properties of Color Spaces and the Representation of Color Images

The Structure and Properties of Color Spaces and the Representation of Color Images
Author: Eric Dubois
Publisher: Morgan & Claypool Publishers
Total Pages: 130
Release: 2010
Genre: Computers
ISBN: 1598292323

This lecture describes the author's approach to the representation of color spaces and their use for color image processing. The lecture starts with a precise formulation of the space of physical stimuli (light). The model includes both continuous spectra and monochromatic spectra in the form of Dirac deltas. The spectral densities are considered to be functions of a continuous wavelength variable. This leads into the formulation of color space as a three-dimensional vector space, with all the associated structure. The approach is to start with the axioms of color matching for normal human viewers, often called Grassmann's laws, and developing the resulting vector space formulation. However, once the essential defining element of this vector space is identified, it can be extended to other color spaces, perhaps for different creatures and devices, and dimensions other than three. The CIE spaces are presented as main examples of color spaces. Many properties of the color space are examined. Once the vector space formulation is established, various useful decompositions of the space can be established. The first such decomposition is based on luminance, a measure of the relative brightness of a color. This leads to a direct-sum decomposition of color space where a two-dimensional subspace identifies the chromatic attribute, and a third coordinate provides the luminance. A different decomposition involving a projective space of chromaticity classes is then presented. Finally, it is shown how the three types of color deficiencies present in some groups of humans leads to a direct-sum decomposition of three one-dimensional subspaces that are associated with the three types of cone photoreceptors in the human retina. Next, a few specific linear and nonlinear color representations are presented. The color spaces of two digital cameras are also described. Then the issue of transformations between \emph{different} color spaces is addressed. Finally, these ideas are applied to signal and system theory for color images. This is done using a vector signal approach where a general linear system is represented by a three-by-three system matrix. The formulation is applied to both continuous and discrete space images, and specific problems in color filter array sampling and displays are presented for illustration. The book is mainly targeted to researchers and graduate students in fields of signal processing related to any aspect of color imaging. Table of Contents: Introduction / Light: The Physical Color Stimulus / The Color Vector Space / Subspaces and Decompositions of the Human Color Space / Various Color Spaces, Representations, and Transformations / Signals and Systems Theory / Concluding Remarks

Multidimensional Signal, Image, and Video Processing and Coding

Multidimensional Signal, Image, and Video Processing and Coding
Author: John W. Woods
Publisher: Academic Press
Total Pages: 617
Release: 2011-05-31
Genre: Computers
ISBN: 0123814219

Multidimensional Signal, Image, and Video Processing and Coding gives a concise introduction to both image and video processing, providing a balanced coverage between theory, applications and standards. It gives an introduction to both 2-D and 3-D signal processing theory, supported by an introduction to random processes and some essential results from information theory, providing the necessary foundation for a full understanding of the image and video processing concepts that follow. A significant new feature is the explanation of practical network coding methods for image and video transmission. There is also coverage of new approaches such as: super-resolution methods, non-local processing, and directional transforms. Multidimensional Signal, Image, and Video Processing and Coding also has on-line support that contains many short MATLAB programs that complement examples and exercises on multidimensional signal, image, and video processing. There are numerous short video clips showing applications in video processing and coding, plus a copy of the vidview video player for playing .yuv video files on a Windows PC and an illustration of the effect of packet loss on H.264/AVC coded bitstreams. New to this edition: - New appendices on random processes, information theory - New coverage of image analysis – edge detection, linking, clustering, and segmentation - Expanded coverage on image sensing and perception, including color spaces - Now summarizes the new MPEG coding standards: scalable video coding (SVC) and multiview video coding (MVC), in addition to coverage of H.264/AVC - Updated video processing material including new example on scalable video coding and more material on object- and region-based video coding - More on video coding for networks including practical network coding (PNC), highlighting the significant advantages of PNC for both video downloading and streaming - New coverage of super-resolution methods for image and video - Only R&D level tutorial that gives an integrated treatment of image and video processing - topics that are interconnected - New chapters on introductory random processes, information theory, and image enhancement and analysis - Coverage and discussion of the latest standards in video coding: H.264/AVC and the new scalable video standard (SVC)

Image Understanding using Sparse Representations

Image Understanding using Sparse Representations
Author: Jayaraman J. Thiagarajan
Publisher: Springer Nature
Total Pages: 115
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031022505

Image understanding has been playing an increasingly crucial role in several inverse problems and computer vision. Sparse models form an important component in image understanding, since they emulate the activity of neural receptors in the primary visual cortex of the human brain. Sparse methods have been utilized in several learning problems because of their ability to provide parsimonious, interpretable, and efficient models. Exploiting the sparsity of natural signals has led to advances in several application areas including image compression, denoising, inpainting, compressed sensing, blind source separation, super-resolution, and classification. The primary goal of this book is to present the theory and algorithmic considerations in using sparse models for image understanding and computer vision applications. To this end, algorithms for obtaining sparse representations and their performance guarantees are discussed in the initial chapters. Furthermore, approaches for designing overcomplete, data-adapted dictionaries to model natural images are described. The development of theory behind dictionary learning involves exploring its connection to unsupervised clustering and analyzing its generalization characteristics using principles from statistical learning theory. An exciting application area that has benefited extensively from the theory of sparse representations is compressed sensing of image and video data. Theory and algorithms pertinent to measurement design, recovery, and model-based compressed sensing are presented. The paradigm of sparse models, when suitably integrated with powerful machine learning frameworks, can lead to advances in computer vision applications such as object recognition, clustering, segmentation, and activity recognition. Frameworks that enhance the performance of sparse models in such applications by imposing constraints based on the prior discriminatory information and the underlying geometrical structure, and kernelizing the sparse coding and dictionary learning methods are presented. In addition to presenting theoretical fundamentals in sparse learning, this book provides a platform for interested readers to explore the vastly growing application domains of sparse representations.

Foundations of Colour Science

Foundations of Colour Science
Author: Alexander D. Logvinenko
Publisher: John Wiley & Sons
Total Pages: 564
Release: 2022-09-26
Genre: Science
ISBN: 1119885914

Presents the science of colour from new perspectives and outlines results obtained from the authors’ work in the mathematical theory of colour This innovative volume summarizes existing knowledge in the field, attempting to present as much data as possible about colour, accumulated in various branches of science (physics, phychophysics, colorimetry, physiology) from a unified theoretical position. Written by a colour specialist and a professional mathematician, the book offers a new theoretical framework based on functional analysis and convex analysis. Employing these branches of mathematics, instead of more conventional linear algebra, allows them to provide the knowledge required for developing techniques to measure colour appearance to the standards adopted in colorimetric measurements. The authors describe the mathematics in a language that is understandable for colour specialists and include a detailed overview of all chapters to help readers not familiar with colour science. Divided into two parts, the book first covers various key aspects of light colour, such as colour stimulus space, colour mechanisms, colour detection and discrimination, light-colour perception typology, and light metamerism. The second part focuses on object colour, featuring detailed coverage of object-colour perception in single- and multiple-illuminant scenes, object-colour solid, colour constancy, metamer mismatching, object-colour indeterminacy and more. Throughout the book, the authors combine differential geometry and topology with the scientific principles on which colour measurement and specification are currently based and applied in industrial applications. Presents a unique compilation of the author’s substantial contributions to colour science Offers a new approach to colour perception and measurement, developing the theoretical framework used in colorimetry Bridges the gap between colour engineering and a coherent mathematical theory of colour Outlines mathematical foundations applicable to the colour vision of humans and animals as well as technologies equipped with artificial photosensors Contains algorithms for solving various problems in colour science, such as the mathematical problem of describing metameric lights Formulates all results to be accessible to non-mathematicians and colour specialists Foundations of Colour Science: From Colorimetry to Perception is an invaluable resource for academics, researchers, industry professionals and undergraduate and graduate students with interest in a mathematical approach to the science of colour.

Image Fusion in Remote Sensing

Image Fusion in Remote Sensing
Author: Arian Azarang
Publisher: Springer Nature
Total Pages: 89
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031022564

Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing.

Wavelet Image Compression

Wavelet Image Compression
Author: William Pearlman
Publisher: Springer Nature
Total Pages: 78
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 3031022483

This book explains the stages necessary to create a wavelet compression system for images and describes state-of-the-art systems used in image compression standards and current research. It starts with a high level discussion of the properties of the wavelet transform, especially the decomposition into multi-resolution subbands. It continues with an exposition of the null-zone, uniform quantization used in most subband coding systems and the optimal allocation of bitrate to the different subbands. Then the image compression systems of the FBI Fingerprint Compression Standard and the JPEG2000 Standard are described in detail. Following that, the set partitioning coders SPECK and SPIHT, and EZW are explained in detail and compared via a fictitious wavelet transform in actions and number of bits coded in a single pass in the top bit plane. The presentation teaches that, besides producing efficient compression, these coding systems, except for the FBI Standard, are capable of writing bit streams that have attributes of rate scalability, resolution scalability, and random access decoding. Many diagrams and tables accompany the text to aid understanding. The book is generous in pointing out references and resources to help the reader who wishes to expand his knowledge, know the origins of the methods, or find resources for running the various algorithms or building his own coding system. Table of Contents: Introduction / Characteristics of the Wavelet Transform / Generic Wavelet-based Coding Systems / The FBI Fingerprint Image Compression Standard / Set Partition Embedded Block (SPECK) Coding / Tree-based Wavelet Transform Coding Systems / Rate Control for Embedded Block Coders / Conclusion

Remote Sensing Image Processing

Remote Sensing Image Processing
Author: Gustavo Camps-Valls
Publisher: Morgan & Claypool Publishers
Total Pages: 194
Release: 2011-12-11
Genre: Technology & Engineering
ISBN: 1608458202

Earth observation is the field of science concerned with the problem of monitoring and modeling the processes on the Earth surface and their interaction with the atmosphere. The Earth is continuously monitored with advanced optical and radar sensors. The images are analyzed and processed to deliver useful products to individual users, agencies and public administrations. To deal with these problems, remote sensing image processing is nowadays a mature research area, and the techniques developed in the field allow many real-life applications with great societal value. For instance, urban monitoring, fire detection or flood prediction can have a great impact on economical and environmental issues. To attain such objectives, the remote sensing community has turned into a multidisciplinary field of science that embraces physics, signal theory, computer science, electronics and communications. From a machine learning and signal/image processing point of view, all the applications are tackled under specific formalisms, such as classification and clustering, regression and function approximation, data coding, restoration and enhancement, source unmixing, data fusion or feature selection and extraction. This book covers some of the fields in a comprehensive way. Table of Contents: Remote Sensing from Earth Observation Satellites / The Statistics of Remote Sensing Images / Remote Sensing Feature Selection and Extraction / Classification / Spectral Mixture Analysis / Estimation of Physical Parameters

Combating Bad Weather Part II

Combating Bad Weather Part II
Author: Sudipta Mukhopadhyay
Publisher: Morgan & Claypool Publishers
Total Pages: 86
Release: 2015-01-01
Genre: Technology & Engineering
ISBN: 1627055878

Every year lives and properties are lost in road accidents. About one-fourth of these accidents are due to low vision in foggy weather. At present, there is no algorithm that is specifically designed for the removal of fog from videos. Application of a single-image fog removal algorithm over each video frame is a time-consuming and costly affair. It is demonstrated that with the intelligent use of temporal redundancy, fog removal algorithms designed for a single image can be extended to the real-time video application. Results confirm that the presented framework used for the extension of the fog removal algorithms for images to videos can reduce the complexity to a great extent with no loss of perceptual quality. This paves the way for the real-life application of the video fog removal algorithm. In order to remove fog, an efficient fog removal algorithm using anisotropic diffusion is developed. The presented fog removal algorithm uses new dark channel assumption and anisotropic diffusion for the initialization and refinement of the airlight map, respectively. Use of anisotropic diffusion helps to estimate the better airlight map estimation. The said fog removal algorithm requires a single image captured by uncalibrated camera system. The anisotropic diffusion-based fog removal algorithm can be applied in both RGB and HSI color space. This book shows that the use of HSI color space reduces the complexity further. The said fog removal algorithm requires pre- and post-processing steps for the better restoration of the foggy image. These pre- and post-processing steps have either data-driven or constant parameters that avoid the user intervention. Presented fog removal algorithm is independent of the intensity of the fog, thus even in the case of the heavy fog presented algorithm performs well. Qualitative and quantitative results confirm that the presented fog removal algorithm outperformed previous algorithms in terms of perceptual quality, color fidelity and execution time. The work presented in this book can find wide application in entertainment industries, transportation, tracking and consumer electronics. Table of Contents: Acknowledgments / Introduction / Analysis of Fog / Dataset and Performance Metrics / Important Fog Removal Algorithms / Single-Image Fog Removal Using an Anisotropic Diffusion / Video Fog Removal Framework Using an Uncalibrated Single Camera System / Conclusions and Future Directions / Bibliography / Authors' Biographies

Virtual Reality and Virtual Environments in 10 Lectures

Virtual Reality and Virtual Environments in 10 Lectures
Author: Stanislav Stanković
Publisher: Morgan & Claypool Publishers
Total Pages: 197
Release: 2015-10-19
Genre: Computers
ISBN: 1627058257

The book is based on the material originally developed for the course on Virtual Reality, which the author was teaching at Tampere University of Technology, as well as course on Virtual Environments that the author had prepared for the University for Advancing Studies at Tempe, Arizona. This original purpose has influenced the structure of this book as well as the depth to which we explore the presented concepts. Therefore, our intention in this book is to give an introduction into the important issues regarding a series of related concepts of Virtual Reality, Augmented Reality, and Virtual Environments. We do not attempt to go into any of these issues in depth but rather outline general principles and discuss them in a sense broad enough to provide sufficient foundations for a further study. In other words, we aim to provide a set of keywords to the reader in order give him a good starting point from which he could go on and explore any of these issues in detail.