The Structural Econometric Time Series Analysis Approach
Download The Structural Econometric Time Series Analysis Approach full books in PDF, epub, and Kindle. Read online free The Structural Econometric Time Series Analysis Approach ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author | : Arnold Zellner |
Publisher | : Cambridge University Press |
Total Pages | : 736 |
Release | : 2004-10-21 |
Genre | : Business & Economics |
ISBN | : 9781139453431 |
Bringing together a collection of previously published work, this book provides a discussion of major considerations relating to the construction of econometric models that work well to explain economic phenomena, predict future outcomes and be useful for policy-making. Analytical relations between dynamic econometric structural models and empirical time series MVARMA, VAR, transfer function, and univariate ARIMA models are established with important application for model-checking and model construction. The theory and applications of these procedures to a variety of econometric modeling and forecasting problems as well as Bayesian and non-Bayesian testing, shrinkage estimation and forecasting procedures are also presented and applied. Finally, attention is focused on the effects of disaggregation on forecasting precision and the Marshallian Macroeconomic Model that features demand, supply and entry equations for major sectors of economies is analysed and described. This volume will prove invaluable to professionals, academics and students alike.
Author | : Andrew C. Harvey |
Publisher | : Cambridge University Press |
Total Pages | : 574 |
Release | : 1990 |
Genre | : Business & Economics |
ISBN | : 9780521405737 |
A synthesis of concepts and materials, that ordinarily appear separately in time series and econometrics literature, presents a comprehensive review of theoretical and applied concepts in modeling economic and social time series.
Author | : Klaus Neusser |
Publisher | : Springer |
Total Pages | : 421 |
Release | : 2016-06-14 |
Genre | : Business & Economics |
ISBN | : 331932862X |
This text presents modern developments in time series analysis and focuses on their application to economic problems. The book first introduces the fundamental concept of a stationary time series and the basic properties of covariance, investigating the structure and estimation of autoregressive-moving average (ARMA) models and their relations to the covariance structure. The book then moves on to non-stationary time series, highlighting its consequences for modeling and forecasting and presenting standard statistical tests and regressions. Next, the text discusses volatility models and their applications in the analysis of financial market data, focusing on generalized autoregressive conditional heteroskedastic (GARCH) models. The second part of the text devoted to multivariate processes, such as vector autoregressive (VAR) models and structural vector autoregressive (SVAR) models, which have become the main tools in empirical macroeconomics. The text concludes with a discussion of co-integrated models and the Kalman Filter, which is being used with increasing frequency. Mathematically rigorous, yet application-oriented, this self-contained text will help students develop a deeper understanding of theory and better command of the models that are vital to the field. Assuming a basic knowledge of statistics and/or econometrics, this text is best suited for advanced undergraduate and beginning graduate students.
Author | : Helmut Lütkepohl |
Publisher | : Cambridge University Press |
Total Pages | : 351 |
Release | : 2004-08-02 |
Genre | : Business & Economics |
ISBN | : 1139454730 |
Time series econometrics is a rapidly evolving field. Particularly, the cointegration revolution has had a substantial impact on applied analysis. Hence, no textbook has managed to cover the full range of methods in current use and explain how to proceed in applied domains. This gap in the literature motivates the present volume. The methods are sketched out, reminding the reader of the ideas underlying them and giving sufficient background for empirical work. The treatment can also be used as a textbook for a course on applied time series econometrics. Topics include: unit root and cointegration analysis, structural vector autoregressions, conditional heteroskedasticity and nonlinear and nonparametric time series models. Crucial to empirical work is the software that is available for analysis. New methodology is typically only gradually incorporated into existing software packages. Therefore a flexible Java interface has been created, allowing readers to replicate the applications and conduct their own analyses.
Author | : Eric Ghysels |
Publisher | : Cambridge University Press |
Total Pages | : 258 |
Release | : 2001-06-18 |
Genre | : Business & Economics |
ISBN | : 9780521565882 |
Eric Ghysels and Denise R. Osborn provide a thorough and timely review of the recent developments in the econometric analysis of seasonal economic time series, summarizing a decade of theoretical advances in the area. The authors discuss the asymptotic distribution theory for linear nonstationary seasonal stochastic processes. They also cover the latest contributions to the theory and practice of seasonal adjustment, together with its implications for estimation and hypothesis testing. Moreover, a comprehensive analysis of periodic models is provided, including stationary and nonstationary cases. The book concludes with a discussion of some nonlinear seasonal and periodic models. The treatment is designed for an audience of researchers and advanced graduate students.
Author | : John D. Levendis |
Publisher | : Springer |
Total Pages | : 409 |
Release | : 2019-01-31 |
Genre | : Business & Economics |
ISBN | : 3319982826 |
In this book, the author rejects the theorem-proof approach as much as possible, and emphasize the practical application of econometrics. They show with examples how to calculate and interpret the numerical results. This book begins with students estimating simple univariate models, in a step by step fashion, using the popular Stata software system. Students then test for stationarity, while replicating the actual results from hugely influential papers such as those by Granger and Newbold, and Nelson and Plosser. Readers will learn about structural breaks by replicating papers by Perron, and Zivot and Andrews. They then turn to models of conditional volatility, replicating papers by Bollerslev. Finally, students estimate multi-equation models such as vector autoregressions and vector error-correction mechanisms, replicating the results in influential papers by Sims and Granger. The book contains many worked-out examples, and many data-driven exercises. While intended primarily for graduate students and advanced undergraduates, practitioners will also find the book useful.
Author | : Peter Hackl |
Publisher | : Springer Science & Business Media |
Total Pages | : 495 |
Release | : 2013-03-09 |
Genre | : Business & Economics |
ISBN | : 366202571X |
In 1984, the University of Bonn (FRG) and the International Institute for Applied System Analysis (IIASA) in Laxenburg (Austria), created a joint research group to analyze the relationship between economic growth and structural change. The research team was to examine the commodity composition as well as the size and direction of commodity and credit flows among countries and regions. Krelle (1988) reports on the results of this "Bonn-IIASA" research project. At the same time, an informal IIASA Working Group was initiated to deal with prob lems of the statistical analysis of economic data in the context of structural change: What tools do we have to identify nonconstancy of model parameters? What type of models are particularly applicable to nonconstant structure? How is forecasting affected by the presence of nonconstant structure? What problems should be anticipated in applying these tools and models? Some 50 experts, mainly statisticians or econometricians from about 15 countries, came together in Lodz, Poland (May 1985); Berlin, GDR (June 1986); and Sulejov, Poland (September 1986) to present and discuss their findings. This volume contains a selected set of those conference contributions as well as several specially invited chapters.
Author | : Pierre Perron |
Publisher | : |
Total Pages | : |
Release | : 2018 |
Genre | : Econometrics |
ISBN | : 9789813237896 |
Part I. Unit roots and trend breaks -- Part II. Structural change
Author | : Helmut Lütkepohl |
Publisher | : Springer Science & Business Media |
Total Pages | : 556 |
Release | : 2013-04-17 |
Genre | : Business & Economics |
ISBN | : 3662026910 |
Author | : Jose Casals |
Publisher | : CRC Press |
Total Pages | : 286 |
Release | : 2018-09-03 |
Genre | : Mathematics |
ISBN | : 131536025X |
The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.