The High Temperature Aspects of Hypersonic Flow

The High Temperature Aspects of Hypersonic Flow
Author: Wilbur C. Nelson
Publisher: Elsevier
Total Pages: 801
Release: 2014-12-02
Genre: Science
ISBN: 1483223310

The High Temperature Aspects of Hypersonic Flow is a record of the proceedings of the AGARD-NATO Specialists' Meeting, held at the Technical Centre for Experimental Aerodynamics, Rhode-Saint-Genese, Belgium in April 1962. The book contains the papers presented during the meeting that tackled a broad range of topics in the aspects of hypersonic flow. The subjects covered during the meeting include pressure measurements, interference effects, the use of wind tunnels in aircraft development testing, high temperature gas characteristics, boundary layer research, stability and control and the use of rocket vehicles in flight research. Aerospace engineers and aeronautical engineers will find the book invaluable.

Rarefied Gas Dynamics

Rarefied Gas Dynamics
Author: Carlo Cercignani
Publisher: Cambridge University Press
Total Pages: 348
Release: 2000-02-28
Genre: Mathematics
ISBN: 9780521659925

The aim of this book is to present the concepts, methods and applications of kinetic theory to rarefied gas dynamics. After introducing the basic tools, problems in plane geometry are treated using approximation techniques (perturbation and numerical methods). These same techniques are later used to deal with two- and three-dimensional problems. The models include not only monatomic but also polyatomic gases, mixtures, chemical reactions. A special chapter is devoted to evaporation and condensation phenomena. Each section is accompanied by problems which are mainly intended to demonstrate the use of the material in the text and to outline additional subjects, results and equations. This will help ensure that the book can be used for a range of graduate courses in aerospace engineering or applied mathematics.

Introduction to Hypersonic Flow

Introduction to Hypersonic Flow
Author: G. G. Chernyi
Publisher: Academic Press
Total Pages: 277
Release: 2013-10-22
Genre: Technology & Engineering
ISBN: 1483271684

Introduction to Hypersonic Flow has been made available to the English speaking reader because of its usefulness for those individuals desirous of obtaining an introduction to the subject. Written by an internationally acknowledged expert in the field of hypersonic flow, the book makes available heretofore unpublished Soviet work, as well as published work little known outside the Soviet Union. The author has however made every effort to include, where appropriate. Western references for the work he discusses. Starting with a general introductory chapter on hypersonic aerodynamics and aerodynamic problems, the remainder of the book concentrates on the inviscid, perfect fluid aspects of hypersonic flow, with emphasis on the fundamental concepts and rational methods of calculation. The book is directed to students of aerodynamics and gas dynamics, as well as to scientists and engineers interested in problems of hypersonic flight. The level of approach is such that it should prove particularly useful as an undergraduate and introductory graduate text.

Theory and Fundamental Research in Heat Transfer

Theory and Fundamental Research in Heat Transfer
Author: J. A. Clark
Publisher: Elsevier
Total Pages: 235
Release: 2013-10-22
Genre: Science
ISBN: 1483149749

Theory and Fundamental Research in Heat Transfer focuses on the processes, methodologies, reactions, and mechanisms involved in heat transfer. The selection first offers information on thermal radiation characteristics of surfaces, including intensity of radiation, intensity of emission and angular emittance, reflectance relationships, diffuse reflector, hemispherical and total reflectances, reflectivity of homogeneous isotropic polished surfaces, and angular total remittance measurements. The text then takes a look at heat transfer in rarefied gas flow, as well as accommodation coefficient and free molecule transfer, near free molecule heat transfer, continuum heat transfer regimes, and transitional regime. The publication ponders on boiling heat transfer and plasma heat transfer. Turbulent heat transfer in stratified flow, thermal conductivity of solids, and studies on quantitative spectroscopy and gas emissivities are also discussed. Topics include emissivity calculations, mechanisms of thermal conductivity, and conductivity at low and intermediate temperatures. The selection is a dependable reference for readers interested in the processes, reactions, and mechanisms involved in heat transfer.

Report

Report
Author: Tōkyō Daigaku. Kōkū Kenkyūjo
Publisher:
Total Pages: 530
Release: 1971
Genre:
ISBN:

Propulsion Re-Entry Physics

Propulsion Re-Entry Physics
Author: Michał Lunc
Publisher: Elsevier
Total Pages: 613
Release: 2014-05-09
Genre: Technology & Engineering
ISBN: 1483184323

Propulsion Re-Entry Physics deals with the physics of propulsion re-entry and covers topics ranging from inductive magnetoplasmadynamic (MPD) propulsion systems to launch systems and orbiting maneuvering systems. Problems of re-entry aerodynamics are considered, along with interaction problems in hypersonic fluid dynamics. Comprised of 31 chapters, this volume begins with a detailed account of the quasi-steady adiabatic vaporization and subsequent exothermic decomposition of a pure monopropellant spherical droplet in the absence of free and forced convection. The discussion then turns to results of calculations on MPD machines working in the intermittent and in the continuous mode; inductive plasma accelerators with electromagnetic standing waves; and spherical rocket motors for space and upper stage propulsion. Subsequent chapters focus on pulsed plasma satellite control systems; drag and stability of various Mars entry configurations; hypersonic laminar boundary layers around slender bodies; and effects of an entry probe gas envelope on experiments concerning planetary atmospheres. This book will appeal to students, practitioners, and research workers interested in propulsion re-entry and the accompanying physics.