The Riemann Hypothesis in Characteristic p in Historical Perspective

The Riemann Hypothesis in Characteristic p in Historical Perspective
Author: Peter Roquette
Publisher: Springer
Total Pages: 239
Release: 2018-09-28
Genre: Mathematics
ISBN: 3319990675

This book tells the story of the Riemann hypothesis for function fields (or curves) starting with Artin's 1921 thesis, covering Hasse's work in the 1930s on elliptic fields and more, and concluding with Weil's final proof in 1948. The main sources are letters which were exchanged among the protagonists during that time, found in various archives, mostly the University Library in Göttingen. The aim is to show how the ideas formed, and how the proper notions and proofs were found, providing a particularly well-documented illustration of how mathematics develops in general. The book is written for mathematicians, but it does not require any special knowledge of particular mathematical fields.

Series and Products in the Development of Mathematics: Volume 2

Series and Products in the Development of Mathematics: Volume 2
Author: Ranjan Roy
Publisher: Cambridge University Press
Total Pages: 480
Release: 2021-03-18
Genre: Mathematics
ISBN: 1108573150

This is the second volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible even to advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 examines more recent results, including deBranges' resolution of Bieberbach's conjecture and Nevanlinna's theory of meromorphic functions.

Series and Products in the Development of Mathematics

Series and Products in the Development of Mathematics
Author: Ranjan Roy
Publisher: Cambridge University Press
Total Pages: 479
Release: 2021-03-18
Genre: Mathematics
ISBN: 1108709370

Second of two volumes tracing the development of series and products. Second edition adds extensive material from original works.

Series and Products in the Development of Mathematics: Volume 1

Series and Products in the Development of Mathematics: Volume 1
Author: Ranjan Roy
Publisher: Cambridge University Press
Total Pages:
Release: 2021-03-18
Genre: Mathematics
ISBN: 1108573185

This is the first volume of a two-volume work that traces the development of series and products from 1380 to 2000 by presenting and explaining the interconnected concepts and results of hundreds of unsung as well as celebrated mathematicians. Some chapters deal with the work of primarily one mathematician on a pivotal topic, and other chapters chronicle the progress over time of a given topic. This updated second edition of Sources in the Development of Mathematics adds extensive context, detail, and primary source material, with many sections rewritten to more clearly reveal the significance of key developments and arguments. Volume 1, accessible to even advanced undergraduate students, discusses the development of the methods in series and products that do not employ complex analytic methods or sophisticated machinery. Volume 2 treats more recent work, including deBranges' solution of Bieberbach's conjecture, and requires more advanced mathematical knowledge.

Elliptic Curves (Second Edition)

Elliptic Curves (Second Edition)
Author: James S Milne
Publisher: World Scientific
Total Pages: 319
Release: 2020-08-20
Genre: Mathematics
ISBN: 9811221855

This book uses the beautiful theory of elliptic curves to introduce the reader to some of the deeper aspects of number theory. It assumes only a knowledge of the basic algebra, complex analysis, and topology usually taught in first-year graduate courses.An elliptic curve is a plane curve defined by a cubic polynomial. Although the problem of finding the rational points on an elliptic curve has fascinated mathematicians since ancient times, it was not until 1922 that Mordell proved that the points form a finitely generated group. There is still no proven algorithm for finding the rank of the group, but in one of the earliest important applications of computers to mathematics, Birch and Swinnerton-Dyer discovered a relation between the rank and the numbers of points on the curve computed modulo a prime. Chapter IV of the book proves Mordell's theorem and explains the conjecture of Birch and Swinnerton-Dyer.Every elliptic curve over the rational numbers has an L-series attached to it.Hasse conjectured that this L-series satisfies a functional equation, and in 1955 Taniyama suggested that Hasse's conjecture could be proved by showing that the L-series arises from a modular form. This was shown to be correct by Wiles (and others) in the 1990s, and, as a consequence, one obtains a proof of Fermat's Last Theorem. Chapter V of the book is devoted to explaining this work.The first three chapters develop the basic theory of elliptic curves.For this edition, the text has been completely revised and updated.

The Brauer-Hasse-Noether Theorem in Historical Perspective

The Brauer-Hasse-Noether Theorem in Historical Perspective
Author: Peter Roquette
Publisher: Springer Science & Business Media
Total Pages: 92
Release: 2006-03-30
Genre: Mathematics
ISBN: 3540269681

The unpublished writings of Helmut Hasse, consisting of letters, manuscripts and other papers, are kept at the Handschriftenabteilung of the University Library at Göttingen. Hasse had an extensive correspondence; he liked to exchange mathematical ideas, results and methods freely with his colleagues. There are more than 8000 documents preserved. Although not all of them are of equal mathematical interest, searching through this treasure can help us to assess the development of Number Theory through the 1920s and 1930s. The present volume is largely based on the letters and other documents its author has found concerning the Brauer-Hasse-Noether Theorem in the theory of algebras; this covers the years around 1931. In addition to the documents from the literary estates of Hasse and Brauer in Göttingen, the author also makes use of some letters from Emmy Noether to Richard Brauer that are preserved at the Bryn Mawr College Library (Pennsylvania, USA).

Quadratic Number Fields

Quadratic Number Fields
Author: Franz Lemmermeyer
Publisher: Springer Nature
Total Pages: 348
Release: 2021-09-18
Genre: Mathematics
ISBN: 3030786528

This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students.

The Story of Algebraic Numbers in the First Half of the 20th Century

The Story of Algebraic Numbers in the First Half of the 20th Century
Author: Władysław Narkiewicz
Publisher: Springer
Total Pages: 448
Release: 2019-01-18
Genre: Mathematics
ISBN: 3030037541

The book is aimed at people working in number theory or at least interested in this part of mathematics. It presents the development of the theory of algebraic numbers up to the year 1950 and contains a rather complete bibliography of that period. The reader will get information about results obtained before 1950. It is hoped that this may be helpful in preventing rediscoveries of old results, and might also inspire the reader to look at the work done earlier, which may hide some ideas which could be applied in contemporary research.

Paul Lorenzen -- Mathematician and Logician

Paul Lorenzen -- Mathematician and Logician
Author: Gerhard Heinzmann
Publisher: Springer Nature
Total Pages: 268
Release: 2021-08-17
Genre: Mathematics
ISBN: 3030658244

This open access book examines the many contributions of Paul Lorenzen, an outstanding philosopher from the latter half of the 20th century. It features papers focused on integrating Lorenzen's original approach into the history of logic and mathematics. The papers also explore how practitioners can implement Lorenzen’s systematical ideas in today’s debates on proof-theoretic semantics, databank management, and stochastics. Coverage details key contributions of Lorenzen to constructive mathematics, Lorenzen’s work on lattice-groups and divisibility theory, and modern set theory and Lorenzen’s critique of actual infinity. The contributors also look at the main problem of Grundlagenforschung and Lorenzen’s consistency proof and Hilbert’s larger program. In addition, the papers offer a constructive examination of a Russell-style Ramified Type Theory and a way out of the circularity puzzle within the operative justification of logic and mathematics. Paul Lorenzen's name is associated with the Erlangen School of Methodical Constructivism, of which the approach in linguistic philosophy and philosophy of science determined philosophical discussions especially in Germany in the 1960s and 1970s. This volume features 10 papers from a meeting that took place at the University of Konstanz.

The Riemann Hypothesis

The Riemann Hypothesis
Author: Peter B. Borwein
Publisher: Springer Science & Business Media
Total Pages: 543
Release: 2008
Genre: Mathematics
ISBN: 0387721258

The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.